

NORTHEASTERN UNIVERSITY

MASTER’S THESIS

Leveraging Type Annotations for
Effective Fuzzing of Python Programs

Author:
Samuel Xifaras

Advisor:
Dr. Panagiotis Manolios

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the

Khoury College of Computer Sciences

December 6, 2024

https://www.northeastern.edu/
https://sam-xif.github.io
https://www.khoury.northeastern.edu/~pete/
https://www.khoury.northeastern.edu/

© 2024 Samuel Xifaras

All rights reserved.

No part of this thesis may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without prior written permission of the author.

ii

Declaration of Authorship

I, Samuel Xifaras, declare that this thesis titled, "Leveraging Type Annotations for Ef-
fective Fuzzing of Python Programs" and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date: December 6, 2024

iii

Abstract

Samuel Xifaras

Leveraging Type Annotations for Effective Fuzzing of Python Programs

Python is among the most popular programming languages, and it powers soft-

ware systems across diverse domains. Ensuring Python-language systems can grow

sustainably is a pressing challenge, complicated by Python’s lack of static typing. Op-

tional type annotations have been added to Python to address this, and static type

checkers have emerged to offer some compile-time guarantees, but these tools often

emit false positives, and there is evidence that developers have been slow to adopt

them. To complement these existing Python code analysis tools, we propose and im-

plement a novel approach, TYPE HINT FUZZING. TYPE HINT FUZZING leverages

type annotations to automatically perform coverage-guided mutational fuzzing, an

extremely successful software testing technique, in a target codebase. Because TYPE

HINT FUZZING executes the code, every issue found has an associated counterexam-

ple that triggers it, precluding false positives.

Three key developments enable the TYPE HINT FUZZING tool’s implementation:

1) a model of Python’s type system in the ACL2 Sedan theorem prover, with custom

enumerators for primitive types 2) a type checker plugin that extracts type annotation

information, and 3) a custom input encoding that is amenable to mutational fuzzing

iv

while preserving decodability. In this thesis, we elaborate on these developments and

perform a rigorous evaluation to assess the performance of the tool. In our evaluation,

we first compare the custom encoding to pickle, the de facto object serializer in Python,

and find that the custom encoding is unequivocally better for fuzzing. Secondly, we

explore various tool configurations to understand the effect of hyperparameters on

fuzzing performance. We draw some conclusions, and find that more work is needed

to fully understand these effects. Finally, we report issues that the tool found in the

set of target repositories. Three bug reports have been accepted as legitimate by open-

source maintainers, and two of them have been patched. We conclude with extensive

discussion of the results and avenues of future work to build on this promising ap-

proach.

v

Acknowledgements

Completing this thesis is the hardest thing I have done yet in my life. I have been

challenged and stretched in incredible ways, and I have learned a great deal about

how to (and how not to) build good software, how to execute the scientific method,

and how to write clearly and concisely. I am still no expert, however. I have a lot to

learn. Above all, this experience has left me utterly humbled by the amount of energy

and persistence it takes to produce high-quality, impactful research. I am astounded

by the fact that I have produced a written treatment in excess of 100 pages, and yet I

feel that there is so much left unanswered and uncovered. I am exceedingly grateful

for this experience, and for all those who made it enjoyable and achievable for me.

First and foremost, I would like to thank my thesis advisor, Pete Manolios. Pete,

without your steadfast support, great ideas, and forthrightness in giving feedback,

I would not have been able to develop into a researcher capable of completing this

work, so thank you. It has truly been a pleasure getting to know you over the past

two years. I am consistently blown away by how much knowledge you have stored

in your mind, and I have truly relished our fun and dynamic conversations in our

weekly group meetings and other encounters. Thank you also for being attentive to

my personal needs as well–when I raised concerns about having taken on too much

scope for the project given the amount of time we had, you understood and worked

with me to make adjustments.

Next, I would like to thank the other reader on the committee, William Robertson.

Thank you, Wil, for agreeing to be a committee member on this project, and for giving

vi

your time to sitting in on the weekly meetings throughout the course of this project.

You have been a consistent source of great ideas, feedback, and insights related to

fuzzing and other areas of your expertise.

I would also like to thank the other members of the Computer-Aided Reasoning

group who participated in the weekly meetings for this project: Drew Walter, Cassidy

Waldrip, and Daniel Yu. Drew, thank you for your inquisitive mind, offering your

time to provide feedback on this writeup, and for creating the type server that I was

able to build on. It has been great getting to know you, and I wish you all the best on

your future endeavours. Cassidy, it has been a pleasure getting to know you as well,

and being able to collaborate with you on the code for this project while you started

working on an extension of it. I have never before authored a piece of software from

the ground up and had someone else start to extend it, so that has been an amazing

learning experience for me. I wish you the best in your future endeavors as a PhD

student and beyond. And Daniel, I would like to thank you also for your help and

companionship during this project. The automation scripts you wrote were very help-

ful, and I hope they provided you with some learning as well. I wish you all the best in

your future endeavours in wherever your career may take you. I thank you all again

and I hope to stay in touch!

One of the aspects of this experience that made it challenging was the fact that I was

doing it part-time alongside a full-time software engineering job at Paperless Parts. I

thank my managers William, Ariella, and Jon, for giving me the support and space I

needed to succeed in completing this thesis while employed. Thank you!

Lastly, but certainly not least, I would like to thank those closest to me. Mom, Dad,

Paulina, and Abby, thank you all so much for your unwavering love and support

throughout this endeavor, and forgive me for all the time I could not spend with you;

I hope to make it up to you now. I love you all.

vii

Thank you again to all, named and unnamed, who influenced me and guided me

through this process. Although this thesis credits me as the sole author, this was a

team effort in many ways.

viii

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements v

Glossary xix

Acronyms xx

1 Introduction 1

2 Background and Motivation 5

2.1 Python and its Type Annotations . 5

2.2 Static Type Checkers . 7

2.3 Problem and Solution . 13

2.4 Related Work . 14

2.4.1 Fuzzing Python Code . 14

2.4.2 Fuzzing Other Dynamic Languages 16

2.4.3 Leveraging Type Information in Fuzzing 17

2.4.4 Bugginess of Python and Software Testing Deficiencies 18

2.4.5 Deficiencies of Static Tools . 20

2.4.6 General Fuzzing-Related Works 21

ix

3 Overview of ACL2s 24

3.1 Data Definition . 24

3.1.1 Primitive Types . 24

3.1.2 Complex types . 25

3.2 Custom Enumerators . 25

3.2.1 Integers . 25

Implementation Errors . 26

3.2.2 Strings . 27

3.2.3 Floats . 27

Implementation Errors . 30

3.3 Related Work . 31

3.4 Acknowledgements . 32

4 Overview of Atheris/libFuzzer 33

4.1 libFuzzer . 33

4.1.1 Fuzzing Loop . 33

4.1.2 Command Line Options . 34

4.1.3 Reduction . 35

4.2 Atheris . 35

4.3 Related Work . 36

5 Tool Design and Implementation 37

5.1 High-level Architecture . 37

5.1.1 Type Information Extraction . 38

5.1.2 Fuzzing . 40

5.1.3 Results Processing . 45

5.2 Implementation Details . 45

x

5.2.1 Type Information Extraction . 46

Type Modeling Service . 46

Type Mapping . 47

Function Candidates . 48

5.2.2 Results Multiset . 48

5.2.3 Monkeypatching . 49

5.2.4 Custom Mutator . 49

5.2.5 Configuration Files . 49

6 Custom Encoding 51

6.1 Motivation . 51

6.2 Design . 53

6.3 Encoding Specification . 55

6.4 Modifications to libFuzzer . 61

6.5 Related Work . 63

6.5.1 Encodings . 63

6.5.2 Vulnerabilities of Pickle . 64

7 Evaluation 65

7.1 Experimental Methods . 65

7.2 Research Questions . 67

7.2.1 RQ1. How does the custom encoding compare to pickle in facili-

tating effective fuzzing? . 67

Post-Mutation Decode Rate . 67

Unique Points and Total Points . 68

Coverage Growth . 69

Knee, Time-to-Knee, Coverage At Knee 71

xi

7.2.2 RQ2. How does the configuration of the tool affect fuzzing per-

formance? . 74

Crash Deduplication . 75

Crash Filtering . 76

Crash Survival Analysis . 77

7.2.3 RQ3. Does the tool find issues that developers care about? 77

Qualitative Issue Classification . 78

7.2.4 Experimental Configurations . 80

Notational Conventions . 80

7.2.5 Repository Selection Methodology 80

7.2.6 Environment . 82

7.2.7 Statistical Test Corrections . 82

7.3 Results . 82

7.3.1 RQ1 . 82

Post-Mutation Decode Rates . 82

Unique and total points . 83

Coverage Growth . 90

TTK, CAK, and CAK/TTK . 91

7.3.2 RQ2 . 98

Cumulative Coverage . 100

CAK/TTK Ratios . 101

Auxiliary Evaluation . 104

Cumulative Crash Counts . 112

Crash Survival Analysis . 112

RMST Comparison . 118

7.3.3 RQ3 . 121

xii

Reported Crashes . 121

Community Feedback . 122

Generative AI Case Study . 126

Other Observations . 129

8 Discussion and Future Work 141

8.1 Discussion . 141

8.2 Threats To Validity . 144

8.2.1 Sample Sizes . 144

8.2.2 Timeouts . 144

8.2.3 Algorithmic Inefficiencies . 145

8.2.4 Repository Selection . 145

8.2.5 Exception Deduplication . 146

8.2.6 Assumptions in Statistical Analysis 146

8.2.7 Confidence Intervals . 147

8.2.8 Custom Enumerators . 147

8.2.9 Manual Bug Analysis and Reporting 147

8.3 Type Hint Enhancement Proposals . 148

8.3.1 Non-empty List . 148

8.3.2 Natural Numbers/Non-negative Integers 148

8.3.3 Generalization: Predicates . 149

8.4 Future Work . 150

8.4.1 Short-term Directions . 150

8.4.2 Long-term Directions . 151

9 Conclusion 152

A Tool Configuration Reference 153

xiii

B Full Crash Data 155

Bibliography 176

xiv

List of Figures

5.1 High-level architecture diagram . 39

6.1 Conceptual example of a Python object’s shape 54

7.1 RQ1 Custom / Pickle unique and total point ratios, part 1 85

7.2 RQ1 Custom / Pickle unique and total point ratios, part 2 86

7.3 RQ1 Custom / Pickle unique and total point ratios, part 3 87

7.4 RQ1 Custom / Pickle unique and total point ratios, part 4 88

7.5 RQ1 Cumulative Coverage, Part 1 . 92

7.6 RQ1 Cumulative Coverage, Part 2 . 93

7.7 RQ1 Cumulative Coverage, Part 3 . 94

7.8 RQ1 Mean Time-to-knee . 95

7.9 RQ1 Mean Coverage-at-knee . 96

7.10 RQ1 Mean CAK/TTK ratios . 97

7.11 RQ2 Cumulative Coverage: mypy, mindsdb, django 102

7.12 RQ2 Cumulative Coverage: black, manticore 103

7.13 RQ2 CAK/TTK ratios . 104

7.14 RQ2 Auxiliary Eval. CAK/TTK ratios . 105

7.15 RQ2 Auxiliary Eval. Cumulative Coverage for mypy 107

7.16 RQ2 Auxiliary Eval. CAK/TTK Distributions 108

7.17 RQ2 Cumulative Crashes: mypy, mindsdb, django 113

xv

7.18 RQ2 Cumulative Crashes: black, manticore 114

7.19 RQ2 Auxiliary Eval. Cumulative Crashes 115

7.20 RQ2 Survival Curves . 116

7.21 RQ2 Auxiliary Eval. Survival Curves . 117

7.22 Excerpt of GPT-4o conversation: Issue Identification 133

7.23 Excerpt of GPT-4o conversation: First Proposed Fix 134

7.24 Excerpt of GPT-4o conversation: Second Proposed Fix 135

7.25 Excerpt of GPT-4o conversation: Pro-Fix Argument 136

7.26 Excerpt of GPT-4o conversation: Pro-Fix Argument, continued 137

7.27 Excerpt of GPT-4o conversation: Anti-Fix Argument 138

7.28 Excerpt of GPT-4o conversation: Anti-Fix Argument, continued 139

7.29 Excerpt of GPT-4o conversation: GPT’s Opinion 140

xvi

List of Tables

5.1 Initial state of type mapping . 47

7.1 Exception category abbreviation definitions 79

7.2 Selected Repositories . 81

7.3 Unique/Total Point Ratio Hypothesis Tests 89

7.4 Total Point Hypothesis Tests . 89

7.5 RQ1 CAK/TTK Ratio Hypothesis Tests 98

7.6 RQ2 Median CAK/TTK Ratios . 107

7.7 RQ2 Auxiliary Eval. Median CAK/TTK Ratios 108

7.8 Hypothesis Test Results of Difference in CAK/TTK 110

7.9 Hypothesis Test Results of Difference in CAK/TTK 111

7.10 RQ2 Hypothesis Test Results of Difference in RMST 119

7.11 RQ2 Auxiliary Eval. Hypothesis Test Results of Difference in RMST . . . 120

7.12 Exception Data with Report Links . 132

B.1 Comprehensive Exception Data . 156

xvii

List of Algorithms

1 Core Fuzzing Loop . 34

2 Type Set Construction . 41

3 Function Candidate Resolution . 41

4 ISSIGUNDERSTOOD Helper Function . 42

5 Phase 2 Fuzzing Loop . 43

6 Phase 2 Helper Functions (Part 1) . 43

7 Phase 2 Helper Functions (Part 2) . 45

8 Primitive Tree Creation . 56

9 Primitive Encoder . 57

10 Primitive Decoder . 57

11 Emit Bytes from PTNode . 58

12 Decode Into PTNode . 60

13 Knee Detection . 73

xviii

Listings

2.1 Motivating example: A snippet of code where mypy and pytype both

report an error when there is no error at runtime. 8

2.2 Motivating example: A false positive report taken directly from mypy’s

issue tracker (#3004). mypy currently does not support a property’s set-

ter having a different type than the property itself. 10

2.3 Motivating example: A snippet of code where mypy and pytype both

report an error when there is no error at runtime. 10

2.4 Example, excerpted from mypy, of a developer explicitly using an assert

statement to enforce an additional constraint of the parameter type that

is not specified in the annotation. 12

6.1 StripMetadata definition in FuzzerMutate.h 62

6.2 StripMetadata definition in FuzzerMutate.h 63

7.1 mypy OverflowError in constant folding logic 122

7.2 Diff of pull request submitted to fix detected type error in mypy 123

7.3 Diff of pull request submitted to fix detected type error in mypy 123

7.4 Violation of assertion to enforce that a list is non-empty in mypy 130

7.5 Violation of assertion to enforce that a string is non-empty in black . . . 130

8.1 StripMetadata definition in FuzzerMutate.h 149

xix

Glossary

corpus is a set of valid inputs to the system-under-test when fuzzing, that the fuzzer

uses as starting points for mutation into new inputs (pl. corpora). 22, 68, 73, 74,

80, 83, 84, 89, 91, 95, 98–101

function candidate is a function in a codebase under test whose types are fully un-

derstood, and is therefore a "candidate" for fuzzing with the tool. 13, 14, 37, 39,

40, 48, 72, 80, 91, 99, 101, 104, 112, 142, 145, 146, 150

function contract is the property that a function will return a value of its return type

when arguments of the correct parameter types are supplied. 13, 43

fuzzing point (also, point) is an input-output pair observed during a fuzzing cam-

paign. 48, 68, 69

harness (also, fuzzing harness) is the piece of code that takes a raw bitvector that

is produced by a fuzzer and uses it to execute meaningful behavior in the code

under test. 3, 15, 21, 22, 42

xx

Acronyms

CAK Coverage At Knee. x, xi, xvi, 67, 71, 73, 74, 91, 98, 99, 101, 105, 106, 109–112, 142,

145

CUT code under test. 13, 21, 69

FUT function under test. 22, 44, 48, 79, 153

RMST Restricted Mean Survival Time. xi, xvi, 77, 99, 106, 115, 118–120

TTK Time-to-Knee. x, xi, xvi, 67, 71, 73, 74, 91, 98, 99, 101, 105, 106, 109–112, 142, 145

1

1 Introduction

In the ever-changing landscape of software, Python has managed to emerge as one of

the most popular languages in the world, named second only after Javascript [126].

Python’s meteoric rise in popularity was, according to many, driven by its versatility,

ease of use, and the growth of an active and supportive community [27, 112]. Python

has become the de facto language for machine learning, and it is now used in many SaaS

products as well, due to the emergence of web frameworks like Django and Flask [27,

112].

Given that Python now powers so much of our world, extra care should be taken

to ensure that Python-language software is easy to understand, easy to modify, sta-

ble, and robust against untrusted inputs. The degree of our dependence on Python

software, and therefore the importance of investing in its safety and security, is un-

derscored by incidents like the discovery of a platform-specific variation in behavior

in one of Python’s standard library calls, which cast doubt on the results of dozens of

research papers [5]. To achieve the goals of ease of understanding and ease of mod-

ification, the Python community has adopted a system of optional type annotations

(often called type hints) [108]. Static typing in code has a range of benefits, from im-

proved modularity and earlier catching of simple bugs [117], to reduced development

time for certain categories of tasks [53]. A key difference, however, between the sys-

tem of type hints in Python and the strong typed-ness of languages like Java and C#

is that types in Python are not enforced statically. The type annotations are essentially

Chapter 1. Introduction 2

ignored when the code is run, meaning that at runtime, values of completely differ-

ent types than those which are indicated by the annotations could be flowing through

one’s code. Static type checkers, and other static analysis tools, such as mypy [125]

and pytype [99] have emerged as a solution to this problem. Although these tools do

often help developers actualize the intent of including type annotations in their code,

they fall short, mostly through no fault of their own: Python’s semantics are very

complex, and there is no evident consensus on what the type system of Python actu-

ally is. Rak-amnouykit et al. [101] identify that mypy and pytype essentially represent

two different type systems, and they catch "largely disjoint sets of errors." Yang, Mi-

lanova, and Hirzel [143] highlight the prevalence of various semantically complicated

"dynamic" Python features that confound static analysis. Perhaps as a consequence of

these factors, these static tools are known to emit many false positive errors–i.e., er-

rors that do not indicate actual runtime problems–which detract from their usefulness

to developers [101]. According to Rak-amnouykit et al. [101], the proportions of false

positives emitted by mypy and pytype may be as high as 49% and 44%, respectively.

To achieve the second two of the aforementioned requirements, stability and ro-

bustness, strong software testing techniques are needed. Static typing discipline and

static analysis tooling can help here as well, but given the complex semantics of Python

and ensuing difficulty of static analysis, dynamic approaches are promising because

the source of truth is the reference interpreter on which all code already runs. Unit

testing is common practice in software engineering, but there is clear evidence that

the overhead in creating unit tests that deeply exercise code deters developers [147].

Fuzzing, on the other hand, is an automated testing approach dating back to the

1980s [39], and it has been wildly successful in finding many bugs, particularly in

C/C++ programs, which tend to be especially buggy due to the burden of manual

memory management on the programmer (see, for instance, the list of trophies in [74]).

Chapter 1. Introduction 3

At a high level, fuzzing is the process of bombarding a system with random inputs and

seeing how it responds. In practice, there are many variants of fuzzing that make

different trade-offs between randomness and structure [146, 145, 139]. Fuzzing in

Python, to our knowledge, has only recently started to become explored [72, 73], en-

abled primarily by the development of Atheris [45], a Python-language fuzzer built on

libfuzzer [74]. The challenge with using Atheris on Python code, however, is that the

tester must understand the code they wish to test well enough to write a harness (i.e. a

small program that takes a stream of bytes as input and executes the code-under-test

in some meaningful way) for it. The challenge of developing harnesses is not trivial,

and there is work on automating this process for C programs [61].

In light of all this, we identify an opportunity to leverage type annotations in

Python code, which are steadily becoming more popular [28], to automatically fuzz

a codebase-under-test at various entry points for which there is type annotation cov-

erage. With this approach, we solve the problem of harness generation, and we enable

more robust testing of software with minimal added human effort (i.e. the effort re-

quired to annotate code, which, while not insignificant, is likely far less than the effort

required to write comprehensive unit tests, especially if a project has checks in place

to ensure that newly added code is annotated). Because fuzzing tests a wider range

of inputs than a typical unit test suite might, we can produce crashes that otherwise

might have gone unnoticed. Furthermore, we can also perform dynamic type check-

ing with this approach, and ensure that type annotations on the output of functions

are actually correct at runtime. Above all, there is by definition no possibility of false

positives since we are running the code; if a type mismatch is detected, we would

easily be able to produce a counterexample. This makes what we report immediately

actionable and interesting for developers.

Chapter 1. Introduction 4

We call this approach TYPE HINT FUZZING. In this thesis, we introduce this ap-

proach in greater detail and describe its implementation. We also include a detailed

evaluation of the tool’s effectiveness, from which we also conclude how to optimally

configure the tool for best results. We also report several real-world bugs found by the

tool.

The main contributions of this work are summarized as follows:

• Modular and extensible design and implementation of a TYPE HINT FUZZING

tool (Chapter 5)

• Design and implementation of a custom input encoding (Chapter 6)

• Evaluation of the effectiveness of the custom input encoding (Chapter 7)

• Exploration of the optimal configuration of the tool (Chapter 7)

• Issue reports for bugs found by the tool submitted back to the open-source com-

munity (Chapter 7)

• Case study of triaging of an issue found by the tool with generative AI (Chap-

ter 7)

• Recommendations for enhancements to the Python type hint system (Chapter 8)

The remainder of this thesis is organized as follows: Chapter 2 covers background

information and related work; Chapters 3 and 4 cover the core technologies the tool

integrates with, ACL2s and libFuzzer, respectively; Chapter 5 covers the architecture

and implementation of the tool; Chapter 6 covers the design and implementation of

the custom input encoding; Chapter 7 contains the evaluation of the three research

questions that we pose; Chapter 8 includes a discussion of the results, threats to their

validity, recommendations for enhancements to the Python type hint system in light of

what we observed, and directions for future work; finally, we conclude in Chapter 9.

5

2 Background and Motivation

In this chapter, we cover background information pertaining to Python, its system of

optional type annotations, and static type checkers that are on the market for checking

annotations. We then reveal deficiencies in commonly used static type checkers for

Python, and motivate our work in light of these. Finally, we include a walk through

related work, illuminating how our work fits into the broader landscape.

2.1 Python and its Type Annotations

Python has become an industry-standard programming language and is the second

most used language, behind JavaScript [126]. Although both of these languages are

considered dynamic because variables can take values of any type at runtime, they

both have some support for optional annotations, which allow types to be notated in

the code. Python had type annotations officially added to the language’s standard

in 2014 [108], while JavaScript’s support is typically provided by a third party, Type-

Script [129], and there is an open proposal to add similar type annotations to the lan-

guage itself [121]. The advantages of static typing include improved modularity and

catching simple bugs earlier [117], and there is evidence that it can reduce develop-

ment time for certain categories of tasks [53]. Type annotations also serve as a form of

in-code documentation, aiding in code readability.

Despite these benefits, type annotations in Python remain somewhat unpopular.

Chapter 2. Background and Motivation 6

A recent empirical study found that less than 10% of all annotatable Python code el-

ements are currently annotated [28]. However, the same study also found that there

is a clear upward trend in growth in type annotations across open source projects in

the Python ecosystem, increasing from just 15 annotations per 1,000 lines of code at

the end of 2017 to 50.1 annotations per 1,000 lines of code in 2021 [28]. Di Grazia and

Pradel [28] also identify three clear type annotation usage patterns across the Python

open-source projects they studied: "regular," "sprinter," and "occasional." "Regular"

projects have type annotations committed steadily alongside new code in the reposi-

tory. "Sprinter" projects have many commits without type annotations, and there will

be type annotation "sprints," consisting of commits that consist mostly or entirely of

type annotations that backfill existing code. "Occasional" projects have a small number

of annotations across a limited number of files. Projects which are classified as regular

type annotators have a greater number of contributors, on average, while occasional

type annotation users have far fewer contributors [28]. This suggests that adding type

annotations is a marker of the maturity of a project.

Type annotations may seem to have unequivocal benefits, but there are a number of

challenges posed by the Python language. Python has many features, many of which

complicate its semantics. These features therefore also complicate static analysis [143].

Furthermore, static analysis tools disagree on how Python’s type hints should be used

and checked. mypy [125], which is essentially an implementation of PEP-484 [108],

the original type hint standard, assumes a strict notion of static typing discipline, sim-

ilar to what one might encounter in Java, while another tool, pytype offers a looser

interpretation [101]. Beyond differences in interpretation of what the type judgement

rules are, there is also the reality that type checking in Python is not decidable [109].

Correct and useful static analysis of Python code is difficult under these conditions,

and indeed, in the following section, we cover instances where static type checking in

Chapter 2. Background and Motivation 7

Python fails to produce results that would be desirable for developers.

2.2 Static Type Checkers

With the advent of type annotations in Python, several static type checkers have been

created to enforce the static typing discipline that these annotations specify at compile-

time. In spite of advances in tooling support for Python’s type annotations, previ-

ous work has found that mypy reports errors in a majority of studied repositories [28,

101]. However, this may not necessarily indicate poor code quality. Rak-amnouykit

et al. [101] offer two hypotheses for this phenomenon: first, that mypy’s type system

generates false-positive warnings more than it catches actual runtime errors which

discourages the use of the tool, and second, that mypy is not the tool of choice for

developers, and they are either not using mypy or using other tools with different be-

haviors. In support of the first hypothesis, they found that 49% of the errors mypy

generated were false positives, and they also found that the false positive rate of a

less strict tool, pytype, was not much lower [101]. It is clear that developers are often

not integrating mypy into their workflows, since these errors were detected statically

at the current versions of the studied repositories. This suggests that the prevalence

of false positive errors may impede adoption of these tools, since developers may not

be motivated to make the necessary code changes to resolve the errors. This is rather

speculative, however, and there is no discussion in the literature of what developers

actually expect from type checkers in Python, but considering the point of view of a

developer, and in light of the evidence from Rak-amnouykit et al. [101], it may be rea-

sonable to expect 1) low false-positive rate, 2) clear, actionable error messages, and 3)

ability to infer obvious facts. As we have discussed, and as we will see in the examples

that follow in this section, static type checkers on the market for Python do not meet

Chapter 2. Background and Motivation 8

these expectations.

In addition to the false positives generated by mypy and pytype, another deterrent

to using these tools are their semantics, which may be seen as overly strict because

they do not account for the use of semantically complex dynamic features that allow

programmers to perform object introspection and object modification on the fly. These

features are not uncommon in Python code. Yang, Milanova, and Hirzel [143] study

the usage patterns of complex Python features, and the authors find that, in a set of

hundreds of thousands of repositories from 2021, 16% of files use some dynamic fea-

ture (getattr, setattr, hasattr, delattr, eval, exec) of Python. Although the authors find

that the majority of dynamic feature occurrences are uses of getattr, setattr still makes

almost 200,000 appearances, and as shown in Listing 2.1, both mypy and pytype fail

to account for attributes set through setattr. The code shown in the listing runs suc-

cessfully on Python 3.8, and the false positive type error was reported with the latest

version of mypy at the time of this writing (version 1.8.0), as well as the latest version

of pytype at the time of this writing (version 2024.02.27).

class A:

def __init__(self, x: int, y: str):

self.x = x

self.y = y

def test(a: A):

setattr(a, 'y', 6)

return a.x + a.y

a = A(5, 'str')

test(a)

LISTING 2.1: Motivating example: A snippet of code where mypy and

pytype both report an error when there is no error at runtime.

Although the example in Listing 2.1 is technically a false positive, there is discus-

sion to be had on whether mypy reporting an error in this case is unreasonable. The

Chapter 2. Background and Motivation 9

usage of setattr in this example seems to be violating the original type annotation of

the y field in class A. However, from the point of view of a programmer, the error that

is raised, which is that the expression a.x + a.y is incompatible with the types of a.x

and a.y, may be unclear (the real problem is the perverse use of setattr), and demon-

strates these tools’ inability to infer seemingly obvious facts. In reality, such facts are

not obvious, especially in Python. Consider the fact that in Python, function symbols

can be overridden arbitrarily at any point. How does a static analysis tool know with

certainty, without executing the code, that setattr actually does what it is assumed

to do by default? In other static analysis settings, such as "linting" in JavaScript, tools

on the market make more conservative tradeoffs to avoid harming the user experience

with false positives [43].

Hypothetical examples aside, there are plenty of real-world examples of false pos-

itives in mypy. For instance, issue #3004 on mypy’s issue tracker, which remains open

at the time of this writing, is an instance of mypy’s type checking preventing Python

developers from fully leveraging novel language features [115]. Listing 2.2 contains an

excerpt from one of the comments on this issue, illustrating a legitimate use case where

having different types for a property’s getter and the input of a property’s setter would

be useful. The benefit of this is, as the commenter explains it, that class Foo can expose

a general interface for setting the foo property that does not make the API user have

to do extra work to conform to a specific underlying representation of _foo while also

providing additional guarantees when accessing foo (i.e. that it is a set) [115]. Further

comments down the chain show that many developers in the community have run

into the same issue, including the mypy team itself. This is an example of how tools

like mypy make unrealistic assumptions about code, to the detriment of many users.

Chapter 2. Background and Motivation 10

from typing import Set, Iterable

class Foo:

def __init__(self) -> None:

self._foo = set() # type: Set[int]

@property

def foo(self) -> Set[int]:

return self._foo

@foo.setter

def foo(self, v: Iterable[int]) -> None:

self._foo = set(v)

Foo().foo = [1, 2, 3]

LISTING 2.2: Motivating example: A false positive report taken directly

from mypy’s issue tracker (#3004). mypy currently does not support a

property’s setter having a different type than the property itself.

from typing import List

def sum_list(x: List[int]) -> int:

first = x[0]

rest = x[1:]

return first + sum_list(rest)

print(sum_list([]))

LISTING 2.3: Motivating example: A snippet of code where mypy and

pytype both report an error when there is no error at runtime.

There are also a number of simple type errors that are commonly encountered dur-

ing Python development that these tools do not catch. These are false negatives, which

are particularly alarming, as this means that runtime crashes can go unnoticed until

they hit a production environment if proper test coverage and other measures are not

in place. Listing 2.3 shows an example of a false negative: a list indexing error caused

by the implicit expectation that the given list is non-empty. If code documentation is

Chapter 2. Background and Motivation 11

poor, then a consumer of this API would have to read through the body of the func-

tion in order to understand the intended type of x (i.e. a non-empty list of integers).

The PEP-484 standard does not provide for a way to express a non-empty list [108]. If

code analysis tools were able to report such issues, developers would likely be very

interested in remediating them because they can have catastrophic consequences if the

errors occur in production settings. In fact, we have observed many instances where

Python developers make up for the deficiencies of the Python type system and its

tooling by using the assert keyword to enforce such additional properties of types.

Listing 2.4 contains an explicit use of assert in this way. This strategy enables po-

tentially unexpected denial-of-service, however, as an assert statement will cause a

runtime crash if the assertion is ever violated. This is especially problematic in light

of the discussion of deficiencies of static type checkers: if subtly invalid data is flow-

ing at runtime through complex business logic that passed type checking, then it is

perfectly reasonable to expect violations of these assertions in certain edge cases. We

expand more on this in the Discussion, where we study cases in the selected reposito-

ries where developers used asserts in this way and propose a set of enhancements to

the Python type hint specification that programmers and static analysis tools can use

to strengthen compile-time guarantees about Python code.

Chapter 2. Background and Motivation 12

def as_required_block(

self,

stmts: list[ast3.stmt],

*,

con_strip: bool = False,

is_coroutine: bool = False,

) -> Block:

assert stmts # must be non-empty

b = Block(

self.fix_function_overloads(

self.translate_stmt_list(

stmts,

con_strip=con_strip,

is_coroutine=is_coroutine,

)

)

)

self.set_block_lines(b, stmts)

return b

LISTING 2.4: Example, excerpted from mypy, of a developer explicitly

using an assert statement to enforce an additional constraint of the

parameter type that is not specified in the annotation.

The story is not all bad, however. Previous work by Khan et al. [69] has shown that

mypy does detect some defects in Python code that was unnanotated and had been

found and fixed by other means. Since mypy does not check untyped definitions by

default, the authors manually annotated the parts of the code which contained each

defect in order to test whether mypy could indeed detect it.

The strengths and weaknesses of static type checkers highlight the need for a test-

ing tool in the Python ecosystem that complements static type checkers–one that allows

type checkers to continue playing to their strengths, while making up for their defi-

ciencies.

Chapter 2. Background and Motivation 13

2.3 Problem and Solution

In light of the issues affecting static type checking in Python, we identify the following

problems:

• P1: Static analysis in Python is hard, due to lack of required static typing, complex

semantics , and programmers’ liberal use of semantically complicated language

features.

• P2: Users of type annotations are not getting as much out of them as they should

for the effort they are putting in. Current tools beleaguer them with false posi-

tives that are uninteresting and false negatives that are dangerous.

To solve these problems, we propose TYPE HINT FUZZING. We base our approach

on fuzzing because it is dynamic (i.e. it executes code), and it has a rich history of being

highly effective at finding real-world bugs [74, 139, 138, 6]. Since fuzzing executes the

code under test (CUT), we need not worry about the complex of semantics of Python;

they are provided by the implementation of the language. This solves P1. To facilitate

fuzzing, TYPE HINT FUZZING utilizes type annotation information from the CUT to

automatically identify functions that are fuzzable. A function is fuzzable if and only if

all of its parameter types and return type are understood under a model of the Python

type system that we construct. When the set of fuzzable functions, which we call

the function candidates, is obtained, the tool automatically fuzzes the functions using

well-formed inputs according to their parameter type annotations. During fuzzing,

the tool collects information about any crashes and function contract violations that are

detected. The "function contract" is the property that a function should return a value

of the type specified by its return type annotation when correctly typed parameters are

given. In this iteration of the implementation, we detect a function contract violation if

a function returns a value that does not match its return type annotation. P2 is solved

Chapter 2. Background and Motivation 14

by this automatic function candidate discovery based on type annotations and the

information we collect about fuzzed functions; developers who annotate their code

reap the value provided by TYPE HINT FUZZING with minimal manual effort.

To implement this tool, we use Atheris [93], a Python-language greybox mutational

fuzzer implemented on top of libFuzzer [74]. More information on Atheris and lib-

Fuzzer is given in Chapter 4. The model of the Python type system and its implemen-

tation are explained in Sections 5.1.1 and 5.2.1. To implement the model of the Python

type system, we use the ACL2 Sedan, ACL2s [30, 13] and we implement a client-server

architecture to interface with the ACL2s model before and during the fuzzing cam-

paign. More background on ACL2s, and how we utilize it, is given in Chapter 3. In

Chapter 5, we elaborate further on the design and implementation details of the tool.

2.4 Related Work

In this section, we take a brief walk over the literature that is related to the background

concepts that motivate this research. Our approach depends on other third-party tools,

and these will be introduced in subsequent chapters. Each of these chapters will have

its own section for related work, and the related work will not be repeated here.

To the best of our knowledge, this thesis represents the first application of fuzzing

to Python code in this way, but we drew inspiration from many works on fuzzing and

static analysis in the literature.

2.4.1 Fuzzing Python Code

PyRTFuzz [72] is a recent paper that utilizes Atheris [93] to fuzz the Python interpreter.

This tool utilizes a two-pronged fuzzing approach. The first phase is generational

fuzzing, where sample Python programs that exercise the various standard library

Chapter 2. Background and Motivation 15

APIs are generated. These Python programs are used as fuzzing harnesses in the sec-

ond phase, mutational fuzzing, which is performed by Atheris. Similar to this work,

PyRTFuzz also had to deal with how to properly call functions which expect certain

types of values. This led them to devise an encoding to pack values for the various ar-

guments together into a single stream of bytes that can be mutated [72]. Their custom

mutation strategy is different from ours, however: instead of allowing Atheris to mu-

tate using its mutation strategies, they have custom methods for generating random

examples of the types that they model. In our work, we use ACL2s [30], a theorem

prover which is extended with a data-definition framework and example-generation

capabilities, to generate these examples (see Chapter 3 for more information). The au-

thors also only model the most common 20 Python types, whereas our type system is

fully extensible, and can extend dynamically to include structural types which consist

of types that have previously been admitted to the model.

Györgyi, Laki, and Schmid [50] verify P4 code generation for P4 programmable

dataplanes by using Atheris to perform differential fuzzing of the source Python sim-

ulation code, which gets translated into lower-level P4 code, and the P4 code itself.

This is an intriguing application of Atheris [93], but this work does not deal with the

Python type system, as they are working with a limited subset of Python that is a

high-level simulation language for P4 programmable dataplanes.

PolyFuzz [73] is a paper that presents a framework for fuzzing of multilingual sys-

tems that is aware of some data flow across language boundaries through the use of a

language-agnostic intermediate representation. Their tool is based on AFL [1], a state-

of-the-art fuzzer, and they compare fuzzing performance when fuzzing multilingual

programs whose APIs are expressed in Python against that of Atheris [93]. The authors

found that PolyFuzz performs better in terms of coverage, and equivalently in terms of

number of bugs found, when compared to Atheris when fuzzing only single-language

Chapter 2. Background and Motivation 16

Python code [73]. The authors also found that, when used on Python-C multilingual

programs, PolyFuzz performs significantly better in terms of code coverage and bugs

found when compared to Atheris, and Atheris with a C coverage instrumentation ex-

tension to allow it to receive coverage feedback from the C portion of the multilingual

code [73]. The work in this thesis focuses on fuzzing Python-only programs to evalu-

ate how the tool performs without a confounding influence from low-level code that

cannot be instrumented, so the performance gains that PolyFuzz makes in multilin-

gual fuzzing are not important for the evaluation presented here. However, the pos-

sibility of substituting Atheris for PolyFuzz in future work to extend our framework

to multilingual programs–especially Python-C multilingual programs, of which there

are many–is intriguing.

2.4.2 Fuzzing Other Dynamic Languages

In the realm of fuzzing other dynamic languages, such as JavaScript, Fuzzilli [47] per-

forms targeted fuzzing of JavaScript’s just-in-time (JIT) compiler, as opposed to pre-

vious work on fuzzing the JavaScript interpreter that does not exercise JIT seman-

tics. Ruzzy [113] is a coverage-guided fuzzer for the high-level interpreted language

Ruby, inspired by Atheris. Ruzzy also is built on libFuzzer, and it supports fuzzing

Ruby code as well as Ruby C extensions. CL-FUZZ [25] is a fuzzer for Common Lisp.

PHUZZ [88] is a coverage-guided fuzzer for web applications written in PHP, another

interpreted language. This work is particularly relevant in the modern age as the

internet is tightly integrated into our lives and all sorts of vulnerabilities abound in

web applications. The authors of PHUZZ find 20 security issues with 2 new CVEs

assigned in their evaluation. Atropos [48], is another PHP fuzzer, which shares many

similarities with PHUZZ, but key differences include its use of FastCGI instead of a

heavier-weight web server to improve fuzzing performance, and its ability to restore

Chapter 2. Background and Motivation 17

snapshots of various states of the virtual machine on which the application-under-

test is running to account for stateful effects of fuzzing. Fuzzing dynamic languages

has become highly relevant as dynamic languages have become popular, and this is

shown by the academic and industry interest in developing such fuzzing tools and

frameworks. Our work on fuzzing Python aligns well with this trend.

2.4.3 Leveraging Type Information in Fuzzing

As for leveraging type information in the fuzzing process, TIFF [62] presents an ap-

proach of using type inference to earmark offsets into a fuzzing input as containing

specific types (such as int32, int64, array, etc.). In our tool, we supply encoded ver-

sions of Python objects (see Chapter 6), so our fuzzing inputs are essentially already

earmarked. TIFF, however, applies specific mutation rules to the marked sections of

the input that are likely to trigger problematic behavior [62]. We do not customize

the mutation procedure for different subsections of the input bitvector, but this is an

interesting idea for expansion of the underlying fuzzer technology that our tool op-

erates on. Another key component of the TIFF algorithm is the use of dynamic taint

analysis to learn the associations between input offsets and flow of data and control.

We do not leverage dynamic taint analysis, but the use case of learning associations

between function arguments and program decision points is clearly applicable in our

case. Integrating with DynaPyt [34], a dynamic taint analysis framework for Python,

could be explored to this end in future work.

SoFi [54] is a JavaScript engine fuzzer that uses object reflection to derive new ways

to mutate program inputs. The authors also introduce a repair strategy to fix instances

where mutation leads to an input that is not syntactically or semantically correct. In

the present work, we only leverage type annotations that are given explicitly in code,

but utilizing additional information to automatically learn how to fuzz more functions

Chapter 2. Background and Motivation 18

is another promising area of future work. Our tool also currently only extracts the at-

tributes of classes, but utilizing a similar reflection-based approach to use the methods

of classes to generate more realistic states of instance objects, for instance, is something

also worth exploring in future work.

JSTIFuzz [141] similarly uses type inference to perform informed mutation, and

they implement a corpus pretreatment step which maximizes the information in the

corpus. In the present work, due to time constraints, we did not implement corpus

minimization for the evaluation, but this is an essential part of future work.

Finally, DIFUZE [21] is an interface-aware kernel fuzzer, motivated by the compli-

cated data structures that are often passed around in Unix-like systems. This motiva-

tion mirrors our own–fuzzing Python programs is complicated because of the poten-

tial for programs to manipulate complex data.

2.4.4 Bugginess of Python and Software Testing Deficiencies

Previous work has identified many bugs in both Python code and its interpreter, and

there is empirical evidence suggesting that Python is a difficult language for develop-

ers to test. PyRTFuzz [72], for instance, finds many vulnerabilities in the interpreter

and standard library of Python, let alone all the bugs that exist in developers’ Python

code. Software testing is a frequently applied method to enforce a specification on

code, and to prevent regressions in behavior, but such test suites have gaps. Marques,

Laranjeiro, and Bernardino [85] bring to light a case study of OpenStack, a Python soft-

ware stack that is used in business-critical settings. The authors apply a fault-injection

tool to the Python code and find many instances where the manual test suite did not

detect the injected faults. Zhai, Casalnuovo, and Devanbu [147] find that Python test

suites in commonly used projects often do not cover deeply nested code; they find

that "each increase in the level of control flow nesting reduces the probability of being

Chapter 2. Background and Motivation 19

tested by about 19%." Manual effort is required to construct a comprehensive, high-

quality test suite, and if organizations lack strict standards around code-coverage or

test coverage in place, the quality of the test suite can suffer. Our approach focuses

on minimizing manual effort, and using the type information that programmers have

already invested manual effort into creating. We do not claim that our tool is a replace-

ment for unit test suites, but we rather envision it as a complement to them, providing

an additional layer of checks for unexpected behavior without additional human inter-

vention. In fact, "fuzz testing" has been recognized as a key component in ensuring the

security of web applications by government agencies [118]. This further demonstrates

the relevance of our approach.

Other automated approaches to test generation have also been developed in re-

sponse to the difficulties of software testing. Fraser and Arcuri [37], for example,

present an evoluationary approach entitled EVOSUITE, with the goal of evolving en-

tire test suites that meet sets of coverage goals, while minimizing the size of the test

suite. Pacheco et al. [95], on the other hand, introduce a feedback-directed approach,

where feedback from execution of a test input informs either the exclusion of the in-

put from the test suite, or the generation of further inputs. Both of these works, like

all test generation works, encounter the oracle problem: how do we know the expected

behavior of a program in response to a test input? Fraser and Arcuri [37], in their

whole test suite generation approach, reduce the burden of this problem by applying

test set minimization techniques to minimize the amount of effort that needs to be

invested by human oracles. Pacheco et al. [95] create oracles from simple heuristic-

based approaches, related to API contracts, and they construct regression oracles by

recording the runtime behavior of code-under-test in response to each input. This is

useful for differential testing, and the authors apply this in the paper to detect incon-

sistencies between two versions of the Java JDK. As for test generation that focuses

Chapter 2. Background and Motivation 20

on Python, Pynguin [77, 76] is a framework that draws from feedback-directed test

generation [95], in its approach. The authors also create a simple model of Python’s

type system, based on mypy’s internal representation of types. They also observe that

type information is crucial to the test generation process. While our work is not a test

generation tool, the approaches are very similar in regards to how they both leverage

type information. Both works could benefit from integration with type inference as

well, since type annotations in Python are optional.

2.4.5 Deficiencies of Static Tools

A common theme among studies of static tools in the literature is that they frequently

emit errors when there is no problem in the underlying code. This is known as a

false positive, or occasionally by the conceptually friendlier term "false alarm." There

is extensive previous work on attempting to detect "false alarms" raised by static tools

and filter them out [52, 55, 56]. Furthermore, Park, Lim, and Ryu [96] describe their

"battles" with false alarms in static analysis of JavaScript web applications. These au-

thors take a different perspective, where they do not strive for perfectly sound analysis

with the risk of making unrealistic assumptions about applications, but to rather make

fewer assumptions and allow unsoundness, while mitigating false alarms wherever

possible. Kang, Aw, and Lo [63] highlight problems in machine-learning based ap-

proaches to false alarm detection, and identify issues in previous work and data used

to train models. This suggests that there is much work left to do in making static tools

viable.

Gong et al. [43] further show that similar deficiencies that we have identified in

static type checkers for Python also exist in static linters for JavaScript (a linter is a

tool that enforces certain rules about code style and the use of certain idioms). In

response, the authors developed a dynamic tool called DLINT. This tool differs from

Chapter 2. Background and Motivation 21

the one we have built, however, because they do not leverage fuzzing to find faults.

Instead, they develop a ruleset of runtime checks, and directly instrument the code-

under-test with additional statements that verify these rules. Instrumenting the code-

under-test in order to augment the fuzzing process with additional information is,

however, a direction we are considering for future work. Additionally, the motivation

behind DLint again mirrors our own: we apply a dynamic approach to make up for

the deficiencies in static type checkers with the aim of creating a tool that is readily

adoptable.

2.4.6 General Fuzzing-Related Works

Turning to other works in the area of fuzzing, Superion [139] is a grammar-aware

fuzzing approach that includes an abstract syntax tree trimming component and ab-

stract syntax tree mutation. DatAFLow [57] presents a data-flow guided fuzzer based

on AFL, though the authors conclude that control-flow guided fuzzing approaches

are more performant, and therefore effective at generating larger sets of test inputs

to feed to the code under test. FuzzGen [61] proposes a method for automatically

generating fuzzing harnesses by inferring valid uses of the API of the code-under-

test. Skyfire [138] presents an approach to generate well-distributed complex fuzzing

inputs through analyzing large collections of existing valid inputs. However, these

preexisting sets of inputs may not always be available in practice. These works, along

with others mentioned in this section, exhibit thematic interest in two key problem

spaces related to fuzzing performance: generating high quality inputs, and generat-

ing high quality fuzzing harnesses. Although our approach does not directly compete

with any of the aforementioned fuzzers (most of them are geared specifically towards

C/C++ programs, anyway), we offer a solution to the input generation problem with

our model of Python’s type system and automatic extraction of type annotations. We

Chapter 2. Background and Motivation 22

create a basic test harness that supplies inputs of the expected types to the function

under test with no extra human effort as well. Integrating ideas for improving the

effectiveness of the harnesses we generate, like those discussed in PyRTFuzz [72] or

FuzzGen [61], is a promising direction of future work.

"Evaluating Fuzz Testing" [70] is a metastudy of many fuzzing papers which scru-

tinizes their evaluation methodologies and discovers several papers that are irrepro-

ducible, or are reproducible only with specific cherry-picked inputs. Similarly, "Seed

Selection for Successful Fuzzing" [59] reports similar findings that the initial seeds

have an avalanching effect on fuzzer performance, and that seed selection should be

top-of-mind when evaluating fuzzers. We are confident that our work does not fall

into these same pitfalls, because by definition, our approach removes all human effort

in generating initial seed inputs, and as suggested by these papers, we have evaluated

our fuzzer using multiple initial random seeds which are used in generation of input

corpora for fuzzing.

Böhme, Pham, and Roychoudhury [6] present "AFLFast," which is a coverage-

guided greybox mutational fuzzer that is augmented by a Markov chain model to

prevent the repeated exploration of the same parts of code by many fuzzing inputs.

The authors find that intentionally choosing inputs that exercise "low-frequency" paths

improve fuzzing performance significantly. As we are likely falling into the same pit-

fall of many inputs repeatedly exercising the same code, the ideas here could be of

use in future work. Shastry et al. [116] present "Orthrus," which uses static program

analysis to inform fuzzer input generation, and they also glean positive results. We

have also considered creating deeper integrations with static tools, in particular type

inference tools, in future work.

A number of previous papers also focus on constructing hybrid fuzzing approaches

that are augmented by symbolic or concolic execution. Driller [119] is a fuzzer which is

Chapter 2. Background and Motivation 23

augmented with symbolic execution in order to pass complex conditionals that block

code regions. Similarly, SAFL [140] is another hybrid algorithm that uses symbolic

execution to learn high-quality initial seeds, which are paramount to fuzzing per-

formance, as previously discussed. QSYM [144] and FUZZOLIC [7] are two more

examples of fuzzing integrated with concolic execution. Concolic execution works

well when combined with fuzzing because it provides an additional aid when the

fuzzer gets stuck on navigating complex program boundaries. While we do not apply

symbolic or concolic execution in our current approach, we have identified this as a

promising future direction as well.

24

3 Overview of ACL2s

ACL2 [66, 67, 68] is a programming environment that provides a Common Lisp-like

language, an automated theorem prover, and an extensible theory in first-order logic.

The ACL2 Sedan, ACL2s [30, 13], is an extension to the ACL2 theorem prover that in-

cludes a data definition framework [15], a counterexample generation framework [19,

18, 16, 14], termination analysis with calling-context graphs [82] and ordinals [79, 80,

81], as well as a property-based modeling and analysis framework. ACL2s also con-

tains a systems programming framework [137] that provides an API allowing queries

to ACL2s using external programming languages.

3.1 Data Definition

In this tool, the type information service is written using ACL2s. We use the data

definition framework to represent Python types in ACL2s.

3.1.1 Primitive Types

The primitive types in ACL2s roughly correspond to the primitive types in Python,

so no substantial transformation is needed. The main difference occurs with floating

point numbers. ACL2s has a rational type, and we use this type to represent floating

point numbers. The rational numbers are a superset of floating point numbers, so this

provides the functionality we need for our purposes. We also add the special values

of inf, -inf, and nan to the floating point type.

Chapter 3. Overview of ACL2s 25

3.1.2 Complex types

Lists are represented with the "true list" type in ACL2s. The ACL2s data definition

framework allows for specifying an arbitrary type as the inner type of the list using

the listof construct [15]. Dictionaries are represented with the map type in the ACL2s

data defintion framework [15].

Record types are represented with the record construct of defdata, where the

class’s field names are mapped to values of the appropriate types [15].

Union types are represented using defdata’s or construct [15].

3.2 Custom Enumerators

In ACL2s, data types are enumerative, meaning that each type is associate with an enu-

merator function that maps the set of natural numbers to objects of the type [15]. We

leverage this property of ACL2s data definitions to create a model of the Python type

system from which representative examples can be extracted for fuzzing. When cre-

ating this model, we found that the default enumerators for some primitive types in

ACL2s have limited ranges that do not represent their Python counterparts. The de-

fault enumerator for strings, for example, emits only alphanumeric strings, but Python

strings can have Unicode characters. We include special "edge case" values of each

type in the enumerators in an attempt to maximize the chances of fuzzing eliciting

problematic behaviors in code. The definitions of these custom enumerators are given

in this section.

3.2.1 Integers

To exercise code that works well with integers, we have created a custom enumera-

tor for integers based on the heuristic that powers of 2 and values around them tend

Chapter 3. Overview of ACL2s 26

to be interesting and may be more likely to trigger failure cases in code. The custom

enumerator generates integers from the following cases with the following probabil-

ities. For convenience of notation, where l, i, h ∈ Z, let P+
2 (l, h) = {2i | l ≤ i ≤ h},

P−2 (l, h) = {−2i | l ≤ i ≤ h}, and P±2 (l, h) = P+
2 (l, h) ∪ P−2 (l, h).

• Sum of powers of two: 85% chance of generating an integer from the set:

{a + b | a ∈ P±2 (0, 64) ∧ b ∈ P±2 (0, 16)}

• Powers of 2, with off by one: 6% chance of generating an integer from the set:

UnionAll({{a, a− 1, a + 1} | a ∈ P±2 (0, 65)})

• 65-bit integers: 6% chance of generating an integer from the set:

UnionAll({{a,−a} | 2 ≤ a ≤ 265})

• One: 1% chance of generating 1.

• Zero: 1% chance of generating 0.

• Negative one: 1% chance of generating −1.

Implementation Errors

Due to an implementation error, the second and third cases were merged into a single

case as follows. These could not be corrected for this work because of time constraints–

the entire evaluation would have needed to be redone with the corrected implemen-

tation. This will be fixed in future work.

• Powers of 2, with off by one: 12% chance of generating an integer from the set:

UnionAll({{a, a− 1, a + 1} | a ∈ P±2 (0, 65)})

Chapter 3. Overview of ACL2s 27

3.2.2 Strings

For strings, we generate many different varieties of Unicode strings. The probabilities

are broken down as follows:

• ASCII strings: 50% chance to generate an ASCII-only string

• Mixed strings: 40% chance to generate a "mixed" string, which contains charac-

ters from the ASCII character set, as well as characters from all of the following

sets

• Emoji strings: 2% chance to generate an emoji-only string

• Greek-letter strings: 2% chance to generate a string with Greek-language char-

acters only

• Mathematical symbols: 2% chance to generate a string with mathematical and

logic symbols only

• Latin diacritics: 2% chance to generate a string with Latin diacritics only

• Compound emojis: 2% chance to generate a string with "compound emojis,"

which are emoji characters that span two or more codepoints

3.2.3 Floats

ACL2s does not have a true notion of a "float"–rather, ACL2s performs arithmetic on

rational numbers. In order to define a floating point type that is representative of

Python’s float type, we define a custom enumerator that produces rational numbers in

pre-defined interesting categories, as well as special case values (note that all numbers

that can be expressed as a floating point value are rational numbers). We use the

same P+
2 /P−2 /P±2 notation from the previous integer enumerator definition. There is

Chapter 3. Overview of ACL2s 28

focus placed on generating "edge case" values that may be likely to trigger interesting

behavior.

• Rational Numbers: 75% chance to generate a rational number, n/k, where n, k

are produced using the enumerator for integers described previously in this sec-

tion

• Powers of 2 with small-magnitude exponents: 4% chance of generating a num-

ber from the set:

UnionAll({{a, a− 1, a + 1} | a ∈ P±2 (−64, 64)})

• Powers of 2 with large-magnitude exponents: 4% chance of generating a num-

ber from the set:

UnionAll({{a, a− 1, a + 1} | a ∈ P±2 (65, 1024) ∪ P±2 (−1024,−65)})

• Min and max normal 32-bit floats: 3% chance of generating a number from the

set:

{2−126,

2−126 + 1,

2−126 − 1,

2127(2−23 − 2),

2127(2−23 − 2)− 1,

2127(2−23 − 2) + 1}

• Min and max normal 64-bit floats, with off by one: 3% chance of generating a

number from the set:

Chapter 3. Overview of ACL2s 29

{2−1022,

2−1022 − 1,

2−1022 + 1,

21023(2−52 − 2),

21023(2−52 − 2)− 1,

21023(2−52 − 2) + 1}

• Max integer representible as a 32 or 64 bit floating point number: 2% chance of

generating a number from the set:

{224,−224, 253,−253}

• Min and max subnormal 32 and 64 bit floats: 2% chance of generating a number

from the set:

{2−149,

− 2−149,

2−126(1− 2−23),

− 2−126(1− 2−23),

2−1074,

− 2−1074,

2−1022(1− 2−52),

− 2−1022(1− 2−52)}

• Not-a-number: 1% chance of generating nan

• Positive Infinity: 1% chance of generating inf

Chapter 3. Overview of ACL2s 30

• Negative Infinity: 1% chance of generating -inf

Implementation Errors

The following cases of the enumerator were implemented incorrectly in the initial ver-

sion of the implementation. These could not be corrected for this work because of

time constraints–the entire evaluation would have needed to be redone with the cor-

rected implementation. This will be fixed in future work. The actual behavior of the

implementation is as follows.

• Min and max normal 32-bit floats: 3% chance of generating a number from the

set:

{2−126, 2−126 + 1, 2−126 − 1, 2104, 2104 − 1, 2104 + 1}

• Min and max normal 64-bit floats: 3% chance of generating a number from the

set:

{2−1022, 2−1022 − 1, 2−1022 + 1, 2972, 2972 + 1, 2972 − 1}

• Min and max subnormal 32 and 64 bit floats: 2% chance of generating a number

from the set:

Chapter 3. Overview of ACL2s 31

{2−149,

− 2−149,

2−126(2−23 − 1),

− 2−126(2−23 − 1),

2−1074,

− 2−1074,

2−1022(2−52 − 1),

− 2−1022(2−52 − 1)}

3.3 Related Work

The ACL2 Sedan [30], abbreviated ACL2s, was introduced as a beginner-friendly in-

terface to the ACL2 [68, 66] automated theorem proving system. It includes features

such as termination analysis with calling-context graphs [82] and the defdata data def-

inition framework [15], making it easy to model and prove theorems about arbitrary

data. The data types in ACL2s are enumerative, meaning that they have enumerators

attached which act as generators of examples of the types. This is the foundation of

the counterexample generation system in ACL2s [20, 17, 14].

Building on the foundation of enumerative data types in ACL2s, Walter, Greve, and

Manolios [135] introduce constraints on the types, and use them to generate sample

input data to test the 802.11 Wi-Fi protocol. Generating data that satisfies the con-

straints of the 802.11 specification is difficult for modern SMT solvers, but a two-stage

approach involving parameterized enumerators and SMT solvers performs well in

generating many correct examples of 802.11 protocol frames. This work on dependent

Chapter 3. Overview of ACL2s 32

types may become useful to TYPE HINT FUZZING in the future, as the set of types in

Python’s type system grows.

ACL2s has also become useful as a pedagogical tool. Walter, Kumar, and Mano-

lios [136] introduce an Eclipse IDE plugin which presents an interactive proof check-

ing interface with the goal of effectively teaching proof-writing skills to undergraduate

students in formal logic courses.

3.4 Acknowledgements

I would like to thank Andrew Walter and Pete Manolios for their contributions to the

design of these custom enumerators. I would further like to thank Andrew Walter for

his assistance in implementing these custom enumerators.

33

4 Overview of Atheris/libFuzzer

4.1 libFuzzer

libFuzzer [74] is a state-of-the-art coverage-guided mutational fuzzer that is included

as a part of the LLVM compiler infrastructure [124]. It targets C/C++ code, and it

supports a wide variety of configuration options. It also integrates with various san-

itizers, such as AddressSanitizer (ASAN), UndefinedBehaviorSanitizer (UBSAN), and

MemorySanitizer, to catch various classes of bugs that can lead to security vulnerabil-

ities such as buffer overflows and out-of-bounds reads. Coverage instrumentation is

provided by SanitizerCoverage, which instruments code at function, basic block, and

edge levels [123].

libFuzzer has been recognized for discovering many bugs in programs, listed in

the "Trophies" section of its documentation [74].

4.1.1 Fuzzing Loop

Algorithm 1 gives the high-level fuzzing loop. INITIALIZE performs the initializa-

tion, which consists of running every input in corpus through the function-under-test

(FN) [74]. PICKUNIT picks a unit to mutate. Which unit is picked can be customized

based on command-line options, but the default setting is to use entropic seed schedul-

ing [84]. After a unit has been picked, it is mutated. libFuzzer has various built-in mu-

tation procedures, such as CROSSOVER, ERASEBYTES, and SHUFFLEBYTES, to name

Chapter 4. Overview of Atheris/libFuzzer 34

a few. libFuzzer will apply up to mutation_depth mutations in a row, sequentially,

where mutation_depth is a configuration parameter that defaults to 5 (in our experi-

ments, we left this at its default value).

Algorithm 1 Core Fuzzing Loop
1: function FUZZLOOP(corpus, numRuns, FN)
2: succeeded← INITIALIZE(corpus, FN)
3: if not succeeded then
4: error
5: end if
6: repeat
7: unit← PICKUNIT(corpus)
8: mutatedUnit← MUTATE(unit)
9: FN(mutatedUnit)

10: until numRuns times, or crash
11: end function

4.1.2 Command Line Options

We have found two command-line options useful in influencing the behavior of lib-

Fuzzer in a way that seems to increase the amount of unique fuzzing activity. The

first is -keep_seed. libFuzzer maintains an internal in-memory corpus that is differ-

ent from the on-disk corpus directory supplied at fuzzer startup. During fuzzing,

libFuzzer selects a next element to mutate from this internal corpus. By default, lib-

Fuzzer will only add elements to this internal corpus if they trigger new coverage.

-keep_seed instructs libFuzzer to always add newly mutated elements to the inter-

nal corpus, even if they do not trigger new coverage. This means that there are more

units available for crossover, the mutation strategy where libFuzzer tries to mix the

contents of two units together to produce a new input. Given that our encoding will

always successfully decode by design (see Chapter 6), we chose to use this option

because it increases the space of possible mutations, which may decrease the chance

that the fuzzer will reach a point of stalling progress. The second command-line op-

tion is -cross_over_uniform_dist, which instructs the crossover operation to select

Chapter 4. Overview of Atheris/libFuzzer 35

the corpus element to cross over with the current input uniformly, instead of the en-

tropic seed scheduling procedure that is enabled by default. This again is intended to

increase the variety of inputs generated through cross over. Through informal obser-

vation, we have found these command line options to increase the variety of inputs

that the fuzzed function receives, especially with limited type information. Follow-up

work may address the degree to which these command line options help or harm the

fuzzing process.

4.1.3 Reduction

An important feature of libFuzzer is that it will attempt to reduce the size of inputs

that trigger some coverage pattern. When libFuzzer finds an input that is shorter than

a previous one but produces the same coverage, it adds the input to the corpus.

4.2 Atheris

We integrate with Atheris, which is a Python-language fuzzer that is built on top of

libFuzzer. Atheris was introduced in 2020 by Google [45]. Atheris is not highly pop-

ular, but it has begun to be used in the literature as fuzzing Python code is becoming

more of a topic of interest [72, 50, 73]. According to the Atheris authors, it is useful

for testing a program where there is a well-defined notion of what "good" and "bad"

behavior are. For many Python programs, "bad" behavior is as simple as throwing

an unexpected exception. For example, the authors note that Atheris was able to suc-

cessfully disprove a claim from a YAML parsing library that only exceptions of type

YAMLError would be thrown. Atheris found that other types of exceptions could be

thrown, which "indicates flaws in the parser" [45].

Chapter 4. Overview of Atheris/libFuzzer 36

Atheris hooks into libFuzzer’s code coverage system by simulating the loading

of shared libraries, and tricking libFuzzer into thinking Python code is dynamically

loaded shared libraries [93]. However, the benefits of using sanitizers such as Address-

Sanitizer and UndefinedBehaviorSanitizer can only be reaped when fuzzing native ex-

tensions to Python. In our evaluation, we focus primarily on Python-first repositories,

so we do not consider bugs in native C code, though this may be an interesting avenue

for future work.

4.3 Related Work

Manès, Böhme, and Cha [84] contribute the "entropic power scheduling" behavior to

libFuzzer, which has since been merged into libFuzzer and is used as the default seed

scheduling algorithm. It utilizes information theory to select seed inputs from the

supplied corpus to mutate and supply to code under test, maximizing the information

gained about behaviors of the code.

Vishnyakov et al. [134] present Sydr-Fuzz, which is a hybrid fuzzing framework

that integrates with libFuzzer and AFL. The paper compared Sydr-Fuzz to libFuzzer

and AFL individually, and found that their hybrid approach is comparable and can

generate many interesting inputs.

Böhme and Falk [12] reveal counterintuitive results about fuzzing: discovering

new bugs linearly requires computational resources exponential in the distance from

previously covered code. They demonstrate these findings through experiments with

libFuzzer and AFL, the two state-of-the-art coverage-guided fuzzers.

37

5 Tool Design and Implementation

In this chapter, we cover the architecture of the tool and various implementation de-

tails. We have endeavored to make the design and implementation of the TYPE HINT

FUZZING tool as modular and extensible as possible, to enable future work.

5.1 High-level Architecture

A high-level architecture diagram is given in Figure 5.1. Components in orange rect-

angles are external, pluggable components, and all the components in white represent

parts of the tool that were programmed as part of this work.

Phase 1 is the Type Information Extraction phase. As the type information extrac-

tor traverses the codebase-under-test (CUT), it extracts information about attribute

accesses on user-defined types (classes), as well as function and method signatures.

From this information, a type set and a set of function candidates are extracted. The type

set is the subset of all Python types that comprise the model of Python’s type system

that underpins the functioning of the tool. This type set, along with the signature infor-

mation from the extracted type information, are used to generate the function candi-

dates, which is the set of top-level functions defined in the codebase whose parameter

types and return type are fully within the set of types that the model understands.

Phase 2 is where fuzzing occurs, and is the phase in which the tool spends the

longest. The tool iterates through each function candidate, generates a corpus, and

Chapter 5. Tool Design and Implementation 38

fuzzes the function-under-test (FUT) until the time budget expires. If the tool is con-

figured to do so, it will reach out to the type modeling service for new examples at a

configurable frequency, with the goal of periodically exposing the fuzzer to new parts

of the search space. This idea is partially inspired by Klees et al. [70], who recommend

that fuzzing tools borrow an idea from SAT solvers: randomly resetting the solving

process in order to prevent falling into a local minimum that is hard to escape. As

fuzzing progresses, the results are collected and transferred to Phase 3 for processing.

Phase 3 is where the results of the fuzzing are processed into data that was used

to generate the results for this thesis. For industrial use, this processing step can be

disabled entirely, and run separately or not run at all if the user prefers to simply

analyze the raw output of Phase 2. We include Phase 3 here nonetheless to clarify how

we obtained the results herein and to inform attempts at reproduction of the results. In

the "Coverage Replay" process, we "replay" the inputs that were supplied to each FUT,

in order, to measure how much of the FUT and the repository as a whole was covered.

In the "Store Results" process, we store the results in a multiset-like data structure to

maximize space efficiency, as the results can grow quite large. Finally, we check the

types of all of the return values for non-exceptional fuzzing iterations, and flag any of

them that do not match the return type annotation of the FUT.

In the following subsections, we cover each of these Phases in greater detail, and in

the following section, we cover concrete implementation details that the reader might

find interesting.

5.1.1 Type Information Extraction

Type Information Extraction happens in two subphases: an extraction phase, and a

registration phase. Extraction is a static analysis process that combs over the CUT, seek-

ing information about 1) top-level function signatures, 2) user-defined class attribute

Chapter 5. Tool Design and Implementation 39

FIGURE 5.1: The architecture of the tool

types, 3) and user-defined class method signatures. Registration in turn has two sub-

phases: type set construction and function candidate resolution. The purpose of type set

construction is to capture any user-defined types that can be expressed in terms of

types that have previously been registered as understood. The procedure repeats until

a maximum number of iterations is executed or a fixed point is reached, whichever

occurs first. After the type set has been constructed, function candidate resolution takes

place, where the set of top-level functions whose signatures are fully understood un-

der the subset of Python types that we have modeled is extracted.

Pseudocode for Type Set Construction is given in Algorithm 2. Lines 2-6 set up the

Chapter 5. Tool Design and Implementation 40

initial state. INITIAL_TYPE_SET (line 2) is predefined to include a number of common

Python types, inspired by the set of most commonly used types in type annotations

from Rak-amnouykit et al. [101]. maxIters (line 3) sets the maximum number of it-

erations of the main loop of the algorithm. The termination condition of the algo-

rithm (line 7) is whether we have executed maxIters iterations, or whether we have

hit a fixed point (i.e. the type set has not changed since the last iteration). The main

loop (lines 8-17) iterates through all the classes that were extracted in the Extraction

process, and admits a class to the type system model if all of its attribute types and

method signatures are understood under the current model. When checking whether

all attributes and methods are understood on lines 12-13, we use expressions of the

form "∀a ∈ set :: P(a)", which evaluate to a boolean value that indicates whether all

elements a in "set" satisfy a predicate P. The procedure is iterative to account for sit-

uations like the following: suppose class B has a field of type class A, and A has all

primitive-typed fields. The first iteration will be guaranteed to admit A, and B will be

admitted in the second iteration, now that A is admitted.

Pseudocode for Function Candidate Resolution is given in Algorithm 3. Since we

have the type set from the previous step, we need only iterate through all of the top-

level function signatures extracted as part of the Extraction phase and use the ISSIGUN-

DERSTOOD helper function (definition given in Algorithm 4), which returns whether

a given function signature is fully understood under a type set. We say that a function

signature is fully understood if and only if all of the types of its positional arguments

(args), keyword arguments (kwargs), and its return type are members of the type set.

5.1.2 Fuzzing

After the type information is extracted and the set of function candidates has been

determined, fuzzing can begin. Our tool is designed to be as agnostic as possible to

Chapter 5. Tool Design and Implementation 41

Algorithm 2 Type Set Construction
1: function TYPESETCONSTRUCTION(signatureIn f o, attribIn f o, methodIn f o)
2: typeSet← INITIAL_TYPE_SET . This is a predefined constant. See implementation details for

the value.
3: maxIters← 5
4: classes← attribIn f o.keys() ∪ methodIn f o.keys()
5: iter ← 0
6: prevSet← null
7: while iter < maxIters and (prevSet is null or prevSet 6= typeSet) do
8: prevSet← copy(typeSet)
9: for class in classes do

10: attributes← classes[class] or empty mapping
11: methods← classes[class] or empty mapping
12: understandAllAttrs← ∀a ∈ attributes.values() :: a ∈ typeSet
13: understandAllMethods← ∀m ∈ methods.values() :: ISSIGUNDERSTOOD(m, typeSet)
14: if understandAllAttrs and understandAllMethods then
15: typeSet← typeSet ∪ {class}
16: end if
17: end for
18: end while
19: return typeSet
20: end function

Algorithm 3 Function Candidate Resolution
1: function FUNCTIONCANDIDATERESOLUTION(signatures, typeSet)
2: f unctionCandidates← ∅
3: for signature in signatures do
4: if ISSIGUNDERSTOOD(signature, typeSet) then
5: f unctionCandidates← f unctionCandidates ∪ {function}
6: end if
7: end for
8: return f unctionCandidates
9: end function

Chapter 5. Tool Design and Implementation 42

Algorithm 4 ISSIGUNDERSTOOD Helper Function
1: function ISSIGUNDERSTOOD(signature, typeSet)
2: for arg in signature.argTypes do
3: if arg 6∈ typeSet then
4: return false
5: end if
6: end for
7: for arg in signature.kwargTypes do
8: if arg 6∈ typeSet then
9: return false

10: end if
11: end for
12: if signature.returnType 6∈ typeSet then
13: return false
14: end if
15: return true
16: end function

the actual implementation of the fuzzer. We rely on a small number of key details: 1)

the fuzzer accepts a corpus (C) of seed inputs (the corpus size is the number of elements

in the corpus, hereinafter occasionally notated as |C|), 2) the fuzzer accepts as input

a function pointer to a harness which accepts a single bitvector as input, and 3) the

fuzzer allows the consumer to hook into the mutation process (this is how we facilitate

occasional fetching of additional seed examples from the Type Modeling Service).

The definition of the main fuzzing loop is given in Algorithm 5. The arguments

(line 1) are the function-under-test (FUT), the types of its positional arguments, the

types of its keyword arguments, and its return type, respectively. Lines 2-4 define lo-

cal variables. knownExceptions is the set of exceptions that have been encountered so

far during fuzzing. The corpus is generated in CREATECORPUS, given in Algorithm 6.

client.ExampleGenerator (line 2 of Alg. 6) produces a generator object, which can be

thought of as an infinite list of random examples of assignments to all of the positional

and keyword arguments to the FUT. corpusSize elements are extracted from the list

and the corpus is returned. On line 4 in Algorithm 5, a higher-order function, CRE-

ATEHARNESS, is called to generate the harness. The definition of CREATEHARNESS is

given in Algorithm 6.

Chapter 5. Tool Design and Implementation 43

Algorithm 5 Phase 2 Fuzzing Loop
1: function FUZZLOOP(FN, argTypes, kwargTypes, returnType, mutatorHook)
2: knownExceptions← ∅
3: corpus← CREATECORPUS(argTypes, kwargTypes, corpusSize)
4: HARNESS← CREATEHARNESS(FN, argTypes, kwargTypes, returnType)
5: while time budget remaining do
6: corpus← AMENDCORPUS(FN, argTypes, kwargTypes, knownExceptions, corpus)
7: okResults, f ailResults, crashResults← FUZZER(HARNESS, corpus, mutatorHook)
8: crashes← { c.exception for c in crashResults }
9: knownExceptions← knownExceptions ∪ crashes

10: end while
11: end function

Algorithm 6 Phase 2 Helper Functions (Part 1)
1: function CREATECORPUS(argTypes, kwargTypes, corpusSize)
2: exampleGen← client.EXAMPLEGENERATOR(argTypes, kwargTypes, batchSize)
3: corpus← []
4: while corpus.size < corpusSize do
5: example← NEXT(exampleGen)
6: encodedExample← ENCODE(example, argTypes, kwargTypes)
7: corpus.APPEND(encodedExample)
8: end while
9: return corpus

10: end function
11:
12: function CREATEHARNESS(FN, argTypes, kwargTypes, returnType)
13: function HARNESS(data)
14: args, kwargs← DECODE(data, argTypes, kwargTypes)
15: result← FN(∗args, ∗ ∗ kwargs)
16: if result is exception then
17: record exception
18: else if result is ok then
19: if returnType.CHECKTYPE(result) then
20: record successful trial
21: else
22: record function contract violation
23: end if
24: end if
25: end function
26: return HARNESS . Note that this function is returning another function: the harness
27: end function

Chapter 5. Tool Design and Implementation 44

To understand lines 5-10 of Algorithm 5, it is helpful to note that an additional im-

plementation detail of the fuzzer is implicitly assumed: the fuzzing process is expected

to occasionally terminate (the reason for the termination is left up to the implementer),

acting as a "checkpoint" where results can be collected in batches and exceptions can

be processed into the knownExceptions (line 9). This behavior also allows for an op-

portunity to amend the corpus with AMENDCORPUS (line 6). Atheris [93] exhibits

this behavior by terminating upon the first exception in the function-under-test that it

encounters. We have found this corpus amendment behavior important in situations

where all elements of the initial corpus trigger exceptions. This is because Atheris, in

its initialization phase, will try to send all elements of the corpus unchanged through

the FUT.

AMENDCORPUS is defined in Algorithm 7. AMENDCORPUS filters out corpus el-

ements that cause known exceptions (lines 3-10), and (depending on the tool’s con-

figuration parameters) will optionally "top off" the corpus, adding new elements to it.

This "top-off" behavior has two modes. The first mode tops the corpus off if the corpus

has dipped below full at all (lines 12-17), and the second mode only adds one element

to the corpus if it has become empty, to make it nonempty (lines 18-22). We use the

second mode in our experimental configurations, because it has proven to be better at

allowing the fuzzing process to start up successfully (for functions where many pos-

sible inputs trigger exceptions, it is easier to generate a single non-exceptional input

than, say, 10 at a time).

Finally, the mutatorHook argument to FUZZLOOP that is passed to FUZZER is a

callback function that is invoked at each round of mutation (this function is known as

a "custom mutator" in libFuzzer terminology). In this function, there is the opportunity

to customize the mutation behavior of the fuzzer arbitrarily, however in this tool it is

used to fetch fresh examples from the type modeling service in a controlled way.

Chapter 5. Tool Design and Implementation 45

Algorithm 7 Phase 2 Helper Functions (Part 2)
1: function AMENDCORPUS(FN, argTypes, kwargTypes, knownExceptions, corpus, originalCorpusSize)
2: exampleGen← client.EXAMPLEGENERATOR(argTypes, kwargTypes, batchSize)
3: for c in corpus do
4: args, kwargs← DECODE(c, argTypes, kwargTypes)
5: result← FN(∗args, ∗ ∗ kwargs)
6: if result is exception then
7: if result ∈ knownExceptions then
8: corpus← corpus\{c}
9: end if

10: end if
11: end for
12: if should top off corpus then
13: while corpus.size < originalCorpusSize do
14: example← NEXT(exampleGen)
15: encodedExample← ENCODE(example, argTypes, kwargTypes)
16: corpus.APPEND(encodedExample)
17: end while
18: else if corpus is empty and should add to corpus if empty then
19: example← NEXT(exampleGen)
20: encodedExample← ENCODE(example, argTypes, kwargTypes)
21: corpus.APPEND(encodedExample)
22: end if
23: return corpus
24: end function

5.1.3 Results Processing

The coverage replay algorithm is trivial. We simply reproduce the sequence of inputs

that were given to a function-under-test, in order, and replay them into the function

until a predetermined limit, if one is set. While the inputs are getting replayed, code

coverage is collected.

5.2 Implementation Details

The tool is implemented in Python 3.8, in about 13K lines of code. In development, we

emphasized strong object-oriented design and composability of the various compo-

nents. We are hopeful that this property of the tool will increase its reusability by the

community. In addition to the Python component, we also integrate with ACL2s [30]

Chapter 5. Tool Design and Implementation 46

(see Chapter 3) as the Type Modeling Service, and Atheris [93] as the Fuzzer, as dis-

played in Figure 5.1.

5.2.1 Type Information Extraction

The model of the type system is implemented as a Python class hierarchy. The root

of the class hierarchy is PyCgenType. Every type extends this root type. The "type set"

referred to in Algorithm 2 and Section 5.1.1 is actually implemented as a type dictio-

nary, that maps names of types to functions that construct PyCgenType instances. Each

PyCgenType instance knows how to communicate with the Type Modeling Service,

and it knows how to translate responses from the Type Modeling Service into actual

Python objects.

Type Modeling Service

The Type Modeling service exposes the following APIs:

• request_examples: request examples of types from the service

• register_record: submit a record type (i.e. a class) for registration; all types of

all fields must already exist/be registered

• register_union: submit a union type for registration; all types of the union must

already exist/be registered

• alias: create a type alias for an existing type

• undef: unregister a type

• set_seed: sets the random seed used to generate examples

Chapter 5. Tool Design and Implementation 47

The client module in the tool’s code exposes these APIs to the rest of the pro-

gram. The TypeInfoService interface in the tis module encapsulates managing this

service’s startup and teardown.

Type Mapping

In Section 5.1.1, we introduced the concept of the type set, which is the set of all types

that have been admitted to the model, and we discussed an iterative procedure that

admits user-defined types to the model based on the types from the last iteration.

This type set is a implemented as a mepping from type names to callable objects that

produce a valid corresponding PyCgenType instance. Table 5.1 provides the initial set

of type mapping elements. This set of types essentially represents the subset of the

Python type system that we natively understand. This is by no means complete, and

we hope to continue to expand this moving forward. Notably, it does not contain

many of the typing constructs from Python’s typing module [130].

TABLE 5.1: Initial state of type mapping

Type Identifier Callable

builtins.int PyCgenInteger
builtins.str PyCgenUnicodeCodepointString
builtins.bool PyCgenBool
builtins.float PyCgenFloat
builtins.list PyCgenList
builtins.bytes PyCgenBytes
builtins.set PyCgenSet
builtins.dict PyCgenDict
None PyCgenNoneType
Tuple PyCgenFixedTuple
builtins.tuple PyCgenVariadicTuple
Union PyCgenUnionType
Any PyCgenAnyType
AnyType PyCgenAnyType

Chapter 5. Tool Design and Implementation 48

Note that we include an entry for "Any" (and its alias "AnyType"). This represents

the dynamic type, as it is known in the literature. This type is consistent with every

other type and every other type is consistent with it [117]. In order to gather data

on how functions annotated with "Any" behave, we represent Any as a large union

between many different types, specifically, Union[int, str, float, bytes, bool,

None, List[str], List[int]].

Function Candidates

Function candidates end up occasionally not being fuzzed, either due to import errors,

or due to various errors during the fuzzing process that render results collection im-

possible. The counts of function candidates therefore represent current upper bounds

on the number of functions we can actually fuzz. We are continuing to investigate

sources of these errors and mitigating them.

5.2.2 Results Multiset

A key implementation detail of the tool is the results storage format. We give it the

name of multiset because it is essentially a multiset of "fuzzing points," which are ob-

servations of input-output pairs during fuzzing. It is implemented as a dictionary that

maps result "structures" to records describing when the particular point was observed.

The result structures contain the positional arguments and keyword arguments sup-

plied to the FUT, and the return value or exception data if an exception was thrown.

The observation record stores the number of times the point appeared during fuzzing,

the index of the fuzzing iteration in which the point was first observed, and a list of

the relative timestamps during the fuzzing campaign when the point was observed.

Chapter 5. Tool Design and Implementation 49

5.2.3 Monkeypatching

Monkeypatching is a rather humorous term for the practice of dynamically overriding

attributes of imported libraries at runtime to change the behavior of code that uses

those libraries. Since the code we fuzz may make calls to the filesystem or other op-

erating system calls, we implemented monkeypatches for these libraries to minimize

the chance of the operating system either terminating the process, or the process pro-

ducing unexpected results in the environment. In other words, it is a primitive form

of process isolation. We monkeypatch calls from os, shutil, pathlib, subprocess, and

the open call from the standard library.

5.2.4 Custom Mutator

The type hint fuzzer implementation allows for freshly generated inputs to be inserted

into the fuzzing process while it is running. The frequency at which this happens is

controlled by a parameter called acl2s_reachout_frequency, shortened for brevity to

acl2s_reachout_freq.

5.2.5 Configuration Files

The tool is configured through the use of INI-style configuration files. These config-

uration files control almost every aspect of how the algorithm runs, such as timeout,

encoding, and how to behave when the corpus becomes empty due to filtering, among

other options. Here, some important configuration options are listed, and a full refer-

ence is given in Appendix A.

• acl2s_reachout_frequency: When backend is set to atheris, this controls the

frequency at which a new input from ACL2s will be pulled during the fuzzing

Chapter 5. Tool Design and Implementation 50

campaign, instead of using a mutated seed input from Atheris. 0.7, for example,

means that 70% of fuzzing iterations will pull a fresh example from ACL2s.

• backend: This is the fuzzing backend to use. Can be either acl2s or atheris. The

acl2s backend represents ACL2s-only fuzzing, with no coverage-guided muta-

tion. atheris represents fuzzing with Atheris. More backends may be added in

the future.

• corpus_size: The size of the corpus. This is applicable when backend is set to

atheris.

• metadata_only: If set to True, scrambles the data portion of all seed inputs with

random bytes, to remove the influence of primitive type information.

• memory_limit_mb: The memory limit, in megabytes.

• random_seed: The random seed of the fuzzing campaign.

• style: Controls the "style" of the fuzzing run: whether it is limited by time, or

by number of iterations. Takes two values, TIMEOUT and RUN_LIMIT.

51

6 Custom Encoding

In this chapter, we discuss the motivation, design, and implementation of the custom

input encoding that we developed to facilitate effective fuzzing.

6.1 Motivation

A challenge we encountered while developing this tool–also encountered in PyRT-

Fuzz [72]–was how to marshal and unmarshal data between actual Python objects

and a byte sequence that Atheris can effectively mutate. Pickle [98], which is Python’s

standard serialization module included in its standard library, seemed like an obvious

choice. However, we quickly realized that pickle objects contain a large proportion

of metadata, even for simple objects (e.g. on Python 3.8.3, pickling the string "hello"

takes up 20 bytes, a 1:3 data-metadata ratio) and pickled data does not actually flatly

encode whatever data the original object contained. Rather, pickled data is a series of

opcodes for a virtual machine, called the "Pickle Machine," that instructs the machine

on how to reconstruct the pickled object [120]. It is no surprise then that in our results,

we find that pickle only succeeds in decoding inputs mutated by Atheris 8.3% of the

time.

Another strong deterrent to using pickle in our tool is the fact that there are known

security risks, including the risk of arbitrary code execution, when unpickling un-

trusted data [120]. Python acknowledges these security risks by stating that devel-

opers should not attempt to unpickle untrusted data [98], but in practice, developers

Chapter 6. Custom Encoding 52

often do. In fact, the practice of sharing pickle files has become commonplace in the

machine learning community, and security vulnerabilities in this practice are begin-

ning to be revealed and discussed [65, 127, 33, 120, 107]. If we were to continue using

pickle in the tool’s implementation, adoption of the tool could be harmed due to these

vulnerabilities. All of these considerations motivated us to develop our own encoding

scheme.

We set out to meet 3 design goals in our custom encoding:

• G1: the encoding should represent metadata (that is, information about the shape

of the Python object) separately from the data (the primitive values that make up

the object).

• G2: for any metadata, any data section should be decodable into a Python object

that fits the shape described by the metadata.

• G3: the encoding should be as versatile as Pickle for Python objects in use cases

beyond just fuzzing.

Why G1? This property is particularly useful for fuzzing since, with a small set

of modifications to libFuzzer [74], it allows the fuzzer to focus solely on mutating the

primitive values of a Python object. Primitive values, such as strings and integers,

are comprised of bytes of data, so this aligns with mutational fuzzers’ strength in ran-

domly and quickly mutating byte streams. The concern of mutating the data in a way

that makes sense in the context of a certain data structure or grammar is handled by

the encoding. This implies that the fuzzer will never be able to change a seed input’s

predefined shape (Definition 1), but given that the ACL2s type model provides us with

a wide variety of possible input shapes, we believe that we can get away with not

relying on the fuzzer to explore the metadata space.

Chapter 6. Custom Encoding 53

Why G2? This property is also useful for maximizing the use of the fuzzing time

budget. Instead of wasting fuzzing cycles on mutated inputs that just get rejected, we

can make the best out of any input that is given.

Why G3? Our encoding is useful in any other fuzzing application for Python, but

given the security vulnerabilities and obscure storage format of pickle, we are moti-

vated to create an encoding that can serve as a substitute for pickle in general use.

6.2 Design

At the highest level, strings in our encoding contain two components, separated by

a metadata separator, which is a 4-byte special sequence. The bytes to the left of the

separator make up the data portion, and the bytes to the right make up the metadata

portion. There is great flexibility in how the metadata is stored as long as it captures all

information about the data’s shape (Definition 1), but for the data section, we prescribe

a rigid format. We define another 4-byte special sequence, the data separator, which

separates individual components of the data. In summary, a string that is produced

by the encoder can be broken down into metadata which describes how the various

data components in the data section can be reconstructed into a Python object.

Definition 1. A shape is the structure of a Python object. It is a tree where each non-leaf ver-

tex is a complex Python object that contains other Python objects. Each leaf vertex represents

a primitive type (i.e. a type that is atomic), annotated with the type of value that should be

placed there in the structure. For container types such as lists, which may contain arbitrary

amounts of objects, the shape of such objects encodes the exact amount of contained objects that

are present in a particular instance. Figure 6.1 contains an example of the shape of a list of

integers, of length 3.

Chapter 6. Custom Encoding 54

FIGURE 6.1: Conceptual example of a shape

We believe this encoding design satisfies G1 and G2, and has excellent potential to

satisfy G3 with future work:

• G1: The metadata and data of our encoding are separated by definition.

• G2: As we will demonstrate in the following section, G2 holds by construction

of our implementation.

• G3: The encoding design supports this goal, provided that the type system is

complete enough to support encoding almost all Python objects that one would

want to encode. Additional work will be required to extend our model of the

type system before this can be fully realized, but the encoding format will not

need to change.

Our encoding design has the added advantage that the length of the data portion

will grow independently of the level of nesting in the structure of the Python object

(this is not necessarily true of the metadata, and it is not true based on the metadata

Chapter 6. Custom Encoding 55

schema we have chosen, but there are opportunities to improve). A key disadvan-

tage of our encoding is that it is still possible to tamper with the metadata to change

the structure of the object that is decoded from a given set of data. However, since

the type of the object needs to be known at decode-time and is not stored in the en-

coded bitvector, there is no opportunity for the actual type of value decoded to change

by modifying the encoded data. And most importantly, unlike pickle, no part of our

encoding exposes an instruction set that can be used to execute arbitrary code.

In the next section, we cover the specification of our implementation of this design.

6.3 Encoding Specification

To encode a Python object, we must separate the data in the primitive "slots" from the

shape of the data (Definition 1). The set of primitives in Python are given in Definition

2. To do this, we must construct a primitive tree. Thus, the first step in the encoding

algorithm is primitive tree creation. This process is given in Algorithm 8.

Definition 2. We define the primitive types as the following subset of Python primitives:

{None, str, int, f loat, bool, bytes}

If the given type is a primitive, we simply create a leaf node (lines 2-3). If the type

is a list-like container type (lines 4-6), we create a node that has as children the primi-

tive trees of its elements (in the pseudocode, we use a Python-like list-comprehension

syntax). If the type is a dictionary, we create a node whose children are the interleaved

primitive trees of its keys and values (lines 7-12). If the type is a class, we obtain a list

of pairs of field names and types, sorted alphabetically by field name (lines 13-15). We

Chapter 6. Custom Encoding 56

then produce a node with the primitive trees of the field values as children, sorted by

field name (lines 16-17).

Algorithm 8 Primitive Tree Creation
1: function CREATEPRIMITIVETREE(value, type)
2: if type is primitive then
3: return PTNODE(value, type, []) . "PTNODE" is a primitive tree node
4: else if type is one of {list, fixedtuple, variadictuple, set} then
5: children← [CREATEPRIMITIVETREE(e, type.inner_type) for e in value]
6: return PTNODE(None, type, children)
7: else if type is dictionary then
8: pairs← value.items()
9: keyChildren← [CREATEPRIMITIVETREE(k, type.key_type) for k, _ in pairs]

10: valChildren← [CREATEPRIMITIVETREE(v, type.value_type) for _, v in pairs]
11: children← INTERLEAVE(keyChildren, valChildren)
12: return PTNODE(None, type, children)
13: else if type is class then
14: f ield_dict← GETFIELDDICTIONARY(type)
15: sorted_ f ields← SORT(f ield_dict.items(), pair→ pair[0])
16: children← [CREATEPRIMITIVETREE(name, t) for name, t in sorted_ f ields]
17: return PTNODE(None, type, children)
18: else if type is union then
19: inner_type_index ← GETUNIONARGINDEX(value, type)
20: inner_type← union.args[inner_type_index]
21: children← [CREATEPRIMITIVETREE(value, inner_type)]
22: return PTNODE(inner_type_index, type, children)
23: else
24: error
25: end if
26: end function

We define the set of primitive types as shown in Definition 2. Algorithm 9 shows

the encoding for primitive types, while Algorithm 10 shows the decoder. The def-

inition of the primitive decoder allows our encoding to satisfy G2, since it handles

arbitrary streams of bytes.

In these two algorithms, NoneType is encoded with a placeholder, NONEVALUE,

as the type has a single value. In decoding, None is unconditionally returned because

the underlying byte sequence does not matter (Algorithm 10, lines 2-3). Integers are

arbitrary precision in Python, which means that we can encode and decode arbitrary-

length integers and byte sequences. Integers are represented as signed big-endian

Chapter 6. Custom Encoding 57

Algorithm 9 Primitive Encoder
1: function ENCODEPRIMITIVE(primitive_value, type)
2: if type is NoneType then
3: return NONEVALUE
4: else if type is int then
5: return TOBYTES(primitive_value, ’int’)
6: else if type is float then
7: return TOBYTES(primitive_value, ’float’)
8: else if type is bool then
9: return 0xF0 if primitive_value is True else 0xF1

10: else if type is str then
11: if primitive_value == "" then
12: return EMPTY
13: end if
14: return encoding primitive_value as UTF-8
15: else if type is bytes then
16: if primitive_value == b”” then
17: return EMPTY
18: end if
19: return primitive_value
20: else
21: error
22: end if
23: end function

Algorithm 10 Primitive Decoder
1: function DECODEPRIMITIVE(byteSequence, type)
2: if type is NoneType then
3: return None
4: else if type is int then
5: return FROMBYTES(byteSequence, int) . ints are arbitrary precision in Python
6: else if type is float then
7: paddedFloat← LEFTPAD(byteSequence, 0x00, 8)
8: return FROMBYTES(paddedFloat[0:8], float)
9: else if type is bool then

10: return is POPCOUNT(byteSequence) even?
11: else if type is str then
12: if primitive_value == EMPTY then
13: return ""
14: end if
15: return decode primitive_value as UTF-8, replacing any errors with a placeholder
16: else if type is bytes then
17: if primitive_value == EMPTY then
18: return b””
19: end if
20: return byte_sequence
21: else
22: error
23: end if
24: end function

Chapter 6. Custom Encoding 58

values. The decision of big-endian is arbitrary. Encoding and decoding integers is im-

plemented with Python’s built-in marshaling functions, represented in Algorithms 9

and 10 as TOBYTES and FROMBYTES. Floating point values in Python are double pre-

cision, so they are stored in eight bytes. To encode them, we emit the eight underlying

bytes using Python’s built-in marshaling function, represented again as TOBYTES on

line 7 of Algorithm 9. Decoding of floating point values takes place on lines 6-8 of

Algorithm 10. If the byte sequence is less than eight bytes in length, we first pad it to

the left with zeros up to a length of eight, and then we decode the byte sequence as if

it were a float. If the byte sequence is greater than eight bytes in length, we clip off the

remaining bytes after the eighth, and decode only the first eight bytes.

Algorithm 11 Emit Bytes from PTNode
1: function EMITBYTES(node : PTNODE)
2: metadata_sexpr ← TREETOSEXPR(node) . Converts the shape information of the tree into an

s-expression representation
3: leaves← COLLECTLEAVES(node) . Collects leaves from left-to-right
4: encodedPrimitives← [ENCODEPRIMITIVE(lea f .value, lea f .type) for lea f in leaves]
5: dataBytes← JOIN(encodedPrimitives, DATASEPARATOR)
6: return JOIN([dataBytes, metadataSexpr], METADATASEPARATOR)
7: end function

Now that we can encode and decode primitive types, and we can construct a prim-

itive tree, we need to create the final byte stream. That is covered in Algorithm 11.

TREETOSEXPR (line 2) is a function that converts the shape information encoded in

the tree into an s-expression. The grammar of these s-expressions is as follows:

METADATA_SEXPR ::= symbol (6.1)

| (INNER_SEXPR)

| (integer INNER_SEXPR)

INNER_SEXPR ::= METADATA_SEXPR " " INNER_SEXPR (6.2)

| METADATA_SEXPR

Chapter 6. Custom Encoding 59

The first production rule (Equation 6.1) has three branches. The first is a symbol,

which is the name of a primitive slot. The symbol PyCgenInteger, for instance, tells

the decoder that an integer is supposed to go into this primitive slot. The second

branch specifies the list case for an s-expression. The third branch specifies a special

case expression which is used to encode union types. The <integer> value represents

the index into the array of arguments to the union. The second production rule (Equa-

tion 6.2) specifies how the s-expression list’s elements are whitespace-separated. Once

the s-expression containing the shape information is generated, the COLLECTLEAVES

function (line 3) collects the leaves of the PTNode tree, from left to right. Then, on line

4, ENCODEPRIMITIVE (defined in Algorithm 9) is used in a list comprehension over

the primitive objects to generate the data stream. Finally, in lines 5-6, the encoded

bitvector is assembled.

To begin the decoding process, the given bitvector is split into its data and metadata

portions. The data portion is further split by the DATASEPARATOR, and this split array

of data segments becomes the dataArray provided in Algorithm 12. The metadata is

parsed according to the grammar given in Equations 6.1 and 6.2. The parsed metadata

becomes a primitive value, or list, depending on the contents of the expression, and

it is given as the metadata argument in Algorithm 12. The second input is the target

type we are decoding into. This is required because the metadata, although it contains

the shape information, does not have information about the source type. This feature

is useful as an extra validation step when decoding, so that arbitrary information is

not decoded. The third input is the metadata segment, after it has been parsed from s-

expression form into Python nested lists. GETRANK (line 2) is a function that produces

the rank of a given metadata. A shape’s rank is the number of primitive "slots" it has

available to fill. For instance, a shape that represents a list of integers of length 5

would have a rank of 5. ROUNDROBINEXTEND (line 3) is a function that takes a list,

Chapter 6. Custom Encoding 60

Algorithm 12 Decode Into PTNode
1: function DECODEINTOPTNODE(dataArray, type, metadata)
2: rank← GETRANK(metadata)
3: primitivesSlots← ROUNDROBINEXTEND(dataArray, rank)
4: if type is primitive then
5: decodedPrimitive← DECODEPRIMITIVE(dataArray[0], type)
6: return PTNODE(decodedPrimitive, type, [])
7: else if type is list, fixedtuple, variadictuple, or set then
8: children← [], o f f set← 0
9: for innerShape in metadata do

10: innerRank← RANK(innerShape)
11: dataSlice← dataArray[o f f set : o f f set + innerRank]
12: children.append(DECODEINTOPTNODE(dataSlice, type.innerType, innerShape))
13: o f f set← o f f set + innerRank
14: end for
15: return PTNODE(None, type, children)
16: else if type is dictionary then
17: children← [], o f f set← 0
18: for pairShape in metadata do
19: keyRank← RANK(pairShape.key)
20: valueRank← RANK(pairShape.value)
21: keyDataSlice← dataArray[o f f set : o f f set + keyRank]
22: key← DECODEINTOPTNODE(keyDataSlice, type.keyType, pairShape.key)
23: o f f set← o f f set + keyRank
24: valueDataSlice← dataArray[o f f set : o f f set + valueRank]
25: value← DECODEINTOPTNODE(valueDataSlice, type.valueType, pairShape.value)
26: o f f set← o f f set + valueRank
27: children.append((key, value))
28: end for
29: return PTNODE(None, type, children)
30: else if type is class then
31: children← []
32: f ieldDict← GETFIELDDICTIONARY(type)
33: sortedFields← SORT(f ieldDict.items(), pair→ pair[0])
34: for (name, f ieldType) in sortedFields do
35: f ieldShape← metadata[name]
36: f ieldRank← GETRANK(f ieldShape)
37: f ieldNode← DECODEINTOPTNODE(dataArray[0 : f ieldRank], f ieldType, f ieldShape)
38: dataArray← dataArray[f ieldRank :]
39: children.append(f ieldNode)
40: end for
41: return PTNODE(None, type, children)
42: else if type is union then
43: innerTypeIndex ← metadata[0]
44: innerType← type.args[innerTypeIndex]
45: innerNode← DECODEINTOPTNODE(dataArray, innerType, metadata[1 :])
46: return PTNODE(innerTypeIndex, type, [innerNode])
47: else
48: error
49: end if
50: end function

Chapter 6. Custom Encoding 61

and pads it up to the given length by taking elements in a circular fashion starting

at the front of the list. For instance, round-robin extending the list [1, 2, 3] to length 5

would yield [1, 2, 3, 1, 2]. The purpose of this logic is to allow for separators in the data

section of the encoding to be erased with no effect on the decodability of the data. If

separators are instead added into the data, either by change or through a deliberate

action of the mutation algorithm, the extra primitives will be ignored during decoding.

This is necessary so the fuzzer is not interrupted if an input fails to decode; since

our encoding never fails by design, our hope is that the fuzzer will have many more

chances to mutate something interesting out of an encoded string. The remainder of

the decoding function given in Algorithm 12 branches into different cases based on

the given type, and the rank information of the various sub-metadata is used to place

the primitive slots as children of the proper nodes. Note the use of DECODEPRIMITIVE

on line 5 from Algorithm 10.

The final step in the decoding algorithm is value reconstruction. For the sake of

brevity, we omit the pseudocode for this step, since it is a straightforward recursive

algorithm which takes a tree constructed in Algorithm 12 and produces the corre-

sponding Python object.

6.4 Modifications to libFuzzer

In order to better support fuzzing using our encoding, we modified libFuzzer to treat

the metadata section of our encoded bit streams as separate from the data, so that

libFuzzer can focus its mutation effort on the data only. Here, we give a summary of

the modifications that were made to libFuzzer.

In libFuzzer’s codebase, there is a class called MutationDispatcher (the definition

is given in FuzzerMutate.h). We added two new methods to this class: StripMetadata

Chapter 6. Custom Encoding 62

and ReplaceMetadata. The definition of StripMetadata is given in Listing 6.1.

StripMetadata locates the aforementioned metadata separator in the current unit,

and returns a new value for the size of the unit that includes all bytes up to the sep-

arator. This essentially hides them from the fuzzing process, since the mutation dis-

patcher uses this size value to bound the array of bytes that comprise the fuzzing

unit. Information about how many bytes were hidden, and whether bytes are cur-

rently being hidden in the first place, are stored as private instance variables on the

MutationDispatcher class, so the metadata can be restored into the encoded bitvector

later. The maximum unit size that was used in all experiments performed in this eval-

uation was 1 MiB (1,048,576 bytes). The effective size of the fuzzer’s mutation surface,

therefore, is 1 MiB - size_of_metadata_in_bytes. As explained previously, metadata

values are stored as uncompressed s-expressions that exactly mirror the shape of the

encoded Python object. For very large objects, this metadata can also grow quite large,

and there is an opportunity to compress this in future work.

/**

* Strips out metadata from the given data,

* and places it into this object for storage

* Returns the new size of the data buffer.

*

* MaxLen - (Size - NewSize) = New Max Mutation Length

*/

int StripMetadata(uint8_t *Data, int Size);

LISTING 6.1: StripMetadata definition in FuzzerMutate.h

ReplaceMetadata, as one might expect, replaces the metadata by unhiding it after it

has been hid with StripMetadata. The declaration of this function is given in 6.2.

Chapter 6. Custom Encoding 63

/**

* Replaces metadata into the given data

* from this object's internal store.

* Returns the new size of the data buffer

*/

int ReplaceMetadata(uint8_t *Data, int Size, int MaxSize);

LISTING 6.2: StripMetadata definition in FuzzerMutate.h

6.5 Related Work

6.5.1 Encodings

Li et al. [72], for their fuzzer PyRTFuzz, developed an input encoding to address the

problem of fuzzing typed function contracts, similar to our use case. Their goal was to

be able to generate type-correct values to be passed into the arguments for each of their

generated Python "APPs," or fuzzing harnesses. In their implementation, they use

FuzzedDataProviders to generate random values of primitive types, such as strings,

integers, and floats. The PyRTFuzz encoding also support some complex types, such

as lists and dictionaries, but unlike our implementation, they do not support arbi-

trarily nested complex types. They also do not support automated extension of the

type system with user-defined types. Lists can only contain primitive strings, for in-

stance. Then, these values are packed together into a single bitvector, separated by

a 4-byte data separator, similar to how we separate the primitive values in the data

portion of the encoding. Our implementation supports the encoding of more diverse

and complex Python objects, and we also leverage the custom enumerator capabilities

of ACL2s, as discussed in Chapter 3, as opposed to the use of FuzzedDataProviders.

Chapter 6. Custom Encoding 64

6.5.2 Vulnerabilities of Pickle

Kathikar et al. [65] perform an assessment of models listed on the Hugging Face plat-

form to identify sources of weakness. They find that some of the most popular parts

of the AI software supply chain, such as transformers [128], are susceptible to arbi-

trary code execution due to deserialization of untrusted pickle data, which is a com-

mon storage format used in the AI community to perform model exchange. Tidjon

and Khomh [127] also flag pickle as a common arbitrary code execution vulnerabil-

ity. The authors found that a contributor to PyTorch, a popular open-source AI/ML

project, regrets introducing pickle into the codebase as a way to exchange models.1

Sultanik [120] provides a deeper look into why pickle is so vulnerable to arbitrary

code execution, and provides a tool to decompile pickle files.

1https://github.com/pytorch/pytorch/issues/52181

65

7 Evaluation

In this chapter, we develop the method of our experimental design, and present the

results of our comprehensive evaluation of the type hint fuzzer.

7.1 Experimental Methods

To the best of our knowledge, this tool is the first to bridge the gap between fuzzing

and arbitrary (annotated) Python code, similar to how PyRTFuzz [72] is the first fuzzer

for the Python interpreter. Like PyRTFuzz, we do not have a direct baseline against

which to compare; our focal evaluation question is "Is this tool effective?" rather than

"Is this tool more effective than X?". Therefore, to evaluate this tool, we focus on under-

standing 1) how to configure the tool for the best results, and 2) whether issues found

by the tool represent feedback that is relevant and actionable for developers.

To understand the best configuration, we first perform a comparative evaluation

between the custom encoding developed in Chapter 6 and the baseline of pickle, so that

we may choose the encoding that better facilitates fuzzing. Then, we evaluate how var-

ious configurations of the tool’s tunable hyperparameters (other than input encoding)

affect fuzzing performance as measured by code coverage and statistics about crashes

found. Finally, to evaluate the practical value of the issues this tool finds, we solicit

feedback from repository maintainers on a sample of the issues found.

In the evaluation of the various tool configurations, we take inspiration from a

Chapter 7. Evaluation 66

history of fuzzing works where the core fuzzer is augmented by another tool (or oc-

casionally, another fuzzer) to enhance progress [72, 139, 138, 134, 36, 140, 23, 119]. A

core evaluation goal, then, which goes together with our design goal of extensibility, is

to understand how best to configure this tool to integrate well with other third-party

tools and analyses. We therefore optimize for quick and comprehensive exploration of

the state space, so that when a fuzzing "wall" is hit, the next step in the pipeline will

have access to a large amount of information.

In light of the motivation given in Chapter 2, we did also consider comparing

the found issues against the issues static type checkers, such as mypy, emit for the

repositories-under-test, but we felt that this would be unfair for the following reasons:

1. We do not claim that the type hint fuzzer can replace static type checkers en-

tirely. Rather, we hope to complement static type checkers by addressing the

deficiencies outlined in Section 2.2.

2. By definition, the set of issues that the type hint fuzzer finds is largely disjoint

from the set of issues that static type checkers can find. The obvious overlap is

identification of when a function’s return type is incorrectly annotated. There

may be other instances where some of the crashes found by the type hint fuzzer

are caused by typing issues that would also be found by mypy, but for the ra-

tionale given in the previous item, we consider this to be out of the scope of this

work.

In the next section, we cover the research questions that we will be asking in order

to answer the question of whether this tool is effective. We also rigorously define the

metrics and bug detection methodology.

Chapter 7. Evaluation 67

7.2 Research Questions

In evaluating this tool, we set out to answer the following research questions.

7.2.1 RQ1. How does the custom encoding compare to pickle in fa-

cilitating effective fuzzing?

In Chapter 6, we delve into the custom input encoding that we designed to address

shortcomings of Python’s pickle object serialization (hereafter denoted pickle) [98]. To

fulfill the goal of understanding how to best configure the tool for optimal fuzzing per-

formance, we perform a comparative evaluation between the custom encoding (here-

after denoted custom) and pickle. To ensure fairness, we compare across a suite of

metrics, and perform statistical tests where necessary to understand the significance

of the results.

The metrics we compare are post-mutation decode rates, unique point and total

point counts, coverage growth over time, the Time-to-Knee (TTK) of coverage growth,

Coverage At Knee (CAK) compared across tool configurations, the ratio of CAK to

TTK, to summarize how much exploration is completed once the first "wall" is hit–

that is, the point at which fuzzing progress slows–and how quickly the fuzzer gets

there into a single metric. These metrics, and their justifications, are given as follows.

Post-Mutation Decode Rate

In this first comparison of custom to pickle, we measure the proportion of mutation

cycles during fuzzing that are are "wasted" on inputs that do not decode properly.

Inputs do not decode properly when libfuzzer’s mutation corrupts the formatting of

the data, which motivated the design of custom in the first place (Chapter 6). We call

this proportion the "post-mutation decode rate," which for brevity we occasionally

Chapter 7. Evaluation 68

shorten to "decode rate." Decode rate is the ratio of successful decodings of an input

after the current unit has been mutated by whatever strategy libfuzzer decides to use,

when there is at least one element present in the corpus. We only count when there is

a non-empty corpus because when this holds, libfuzzer will pick an element from the

corpus to start mutating, rather than attempting to create an input from nothing. This

provides a clearer picture of how often a decodability of an input stream is preserved

during mutation.

The formal definition is given in Equation 7.1. This equation represents the decode

rate, under some random seed, n, for the given configuration C and function F. Stotal

is the number of successful decodings measured in total. Swith no corpus are the number

of successful decodings when there are no elements in the corpus. In our observa-

tions, this value is typically zero or near zero. Ttotal is the total number of decoding

attempts, while Twith no corpus is the total number of decoding attempts when there are

no elements in the corpus.

DRn(C, F) =
Stotal − Swith no corpus

Ttotal − Twith no corpus
(7.1)

Unique Points and Total Points

In the second comparison of custom to pickle, we measure unique and total points

during fuzzing campaigns under each encoding. The definition of fuzzing point and

"unique points", and "total points" are given in Definition 3. While there is no prece-

dent for this type of comparison, to our knowledge, in the literature, we find that

counting total points is a useful way to understand the amount of fuzzing volume

that each encoding facilitates. By comparing the ratio of unique points to total points,

the relative proportion of time spent during fuzzing on exploring new parts of the

state space is also revealed.

Chapter 7. Evaluation 69

Definition 3. A fuzzing point is an input-output pair (analogous to a point on an x-y coor-

dinate plane, where y is a function of x). During a fuzzing campaign, points that are emitted

need not be unique. The set of all points emitted is referred to as the set of unique points.

The volume of points emitted during a fuzzing campaign is referred to as the quantity of total

points.

It is worth noting that this metric is not guaranteed to be reproducible when fuzzing

on a timeout, since fluctuations in the speed at which the program runs on the testbed

machine may affect this value.

Coverage Growth

In previous work related to fuzzing, understanding how a fuzzer’s coverage of the

code under test (CUT) evolves overtime has proven useful in measuring fuzzer per-

formance [72, 59, 57, 36]. It is useful for visually understanding the relative coverage

performance of tool configurations, and for identifying when the coverage "wall" is

getting hit, after which adding additional time budget may offer diminishing returns.

This metric is defined as the number of statements covered in the union of the sets of

statements of the bodies of all functions that were successfully fuzzed, as a function of

time. The y-axis of these charts are given in number of statements covered.

In order to construct the graph, we use the data produced during the "coverage

replay" phase of the tool’s operation, described in Section 5.1.3. This phase produces

a set of "coverage points," which are ordered pairs of the form (time, lines covered).

To account for variability in independent trials, we incorporate all five trials’ results

by computing the arithmetic mean at evenly spaced ..., and present 95% confidence

interval bounds above and below the main line.

Chapter 7. Evaluation 70

The algorithm to generate the graph is as follows: first, we generate equally spaced

values along the time range of the fuzzing campaign, [0, 440]. Let T be the set of these

values. If there are n bins, then T = {0, 440
n , 2 ∗ 440

n , 3 ∗ 440
n , · · · , (n− 1) ∗ 440

n , 440}.

The definition of CumCov is given in equation 7.2. For a given experimental con-

figuration, c, set of functions F, random seed s, and bin cutoff b, this function produces

the ratio of lines covered across function bodies in F under the given experimental con-

figuration and seeds, utilizing all coverage chunks whose timestamps are the greatest

that are less than or equal to b. CovPoints returns the set of coverage samples associ-

ated with the given function f , configuration c, and random seed n. These chunks are

represented as 2-tuples, with the first element, written as t′ in Eq. 7.2, being the relative

timestamp in the fuzzing campaign at which the coverage sample was obtained, and

the second element, written as cov, being the number of statements in the function’s

body that have been covered covered. By definition of the coverage replay algorithm

(Section 5.1.3), coverage increases monotonically with respect to time, which allows

us to use max on the set of coverage ratios to get the coverage value that corresponds

with the latest bin.

CumCov(F, c, t, s) = ∑
f∈F

max{cov | (t′, cov) ∈ CovPoints(f , c, s) ∧ t′ ≤ t} (7.2)

To combine results across independent trials, we use Equation 7.3 to produce the

final graph. This function produces the arithmetic mean of cumulative coverage across

the independent trials corresponding to random seeds in the set S.

CumCovGrowth(F, c, t) =
1
|S| ∑s∈S

CumCov(F, c, t, s) (7.3)

In the visualizations of these coverage curves, following previous work in Grissom

Chapter 7. Evaluation 71

and Kim [46] and Herrera et al. [59], we also include 95% confidence intervals, com-

puted with the bootstrap method applied to the sample sets of which we are taking the

arithmetic mean in Equation 7.3. In our evaluation, |S| = 5, which is not a large sam-

ple size, but our goal with this metric is not to perform statistical analysis; we simply

use the confidence intervals to visualize variability across the independent trials.

Knee, Time-to-Knee, Coverage At Knee

When two systems or parts of a pipeline need to be integrated, such as the Level-1

and Level-2 fuzzer in PyRTFuzz [72], or AFL and the concolic execution engine in

Driller [119], some decision procedure is required in order to determine when the cu-

tover between one part and another should take place. In the case of PyRTFuzz, this

cutover is based on a predetermined time budget [72], and in the case of Driller, the cu-

tover to concolic execution occurs when the fuzzer has gone through a predetermined

number of mutation cycles without new coverage, proportional to the input length

[119]. Inspired by these works, and inspired by the common intuition of the "knee" of

a curve, we develop a method of identifying when the type hint fuzzer is stuck. This is

important to measure because it allows us to achieve our stated evaluation goal of un-

derstanding how to best configure the fuzzer to achieve fast and comprehensive state

space exploration, so that integration with other tools and analyses can be effective.

To this end, we introduce three metrics, Time-to-Knee (TTK), and Coverage At Knee

(CAK), and their ratio, CAK/TTK.

Definitions of knees of curves exist in the literature, such as the one given by

Demetris T Christopoulos [26], which is based on the definition of curvature of a func-

tion. However, given the problem we are trying to solve by detecting the knee, we

saw it fitting to create a new definition for the "first knee" of a curve that is more in

line with the notion that a fuzzer is "stuck" when significant progress has stopped for

Chapter 7. Evaluation 72

a certain "long" (on the order of seconds-minutes) amount of time. Algorithm 13 gives

our definition for how we detect knees in curves (this definition is general, and shared

across all types of curves we may examine in this work). lookBehind is the size of the

window of samples to evaluate when looking for a knee, in seconds. We choose 60

seconds because in modern computational contexts, a minute is a long time for perfor-

mance to stall. So that each lookBehind window covers the same number of samples

across all functions, we perform the following derivation.

Let s be the number of samples we want to capture in each lookBehind window.

Let F be the set of fuzzable functions in some repository; the number of function can-

didates therefore is |F|. The time spent fuzzing each function candidate is T = 440

seconds. If we want s samples to be present in each window of size lookBehind, then

we need Ns
lookBehind

T = s to be true, where Ns is the number of samples, or equally

spaced points in time at which to compute total coverage based on the chunks that

were logged up to that point. By elementary algebra, and accounting for different

time units, we derive Equation 7.4.

Ns =
440s

lookBehind
(7.4)

We choose s = 10, as a balance between too small of an s leading to lack of reso-

lution in the curves, and too high of an s leading to unnecessarily large computation

times. slopeThreshold is the threshold below which the slope between two samples is

considered to be indicative of a lack of progress. Its unit is new lines covered / second.

It is set to 0.5. We choose 0.5 because the typical pattern that we observe (see Figures

7.5, 7.6, and 7.7) is that there is a short burst of high coverage gain at the beginning of

the fuzzing campaign (slope � 1), and this slope quickly decreases to < 1. Choosing

a slope that is too small would lead to very late detection of this dropoff, and choosing

one that is too large (too close to 1) could lead to detection of the knee while it is still

Chapter 7. Evaluation 73

forming in some cases, so we choose 0.5 as a reasonable compromise.

Algorithm 13 Knee Detection
1: function FINDKNEE(X, Y)
2: lookBehind← 60 . detect knees if progress has stalled for 1 minute
3: slopeThreshold← 0.5
4: for idx in [0, 1, · · · , |X| − 1, |X|] do
5: coords← [(x, y) for x, y in zip(X, Y) where X[idx]− lookBehind ≤ x ≤ X[idx]]
6: slopes← [coords[j].y−coords[j−1].y

coords[j].x−coords[j−1].x for j in [1..|coords|)]
7: if |slopes| > 0 and X[idx] ≥ lookBehind and all slopes < slopeThreshold then
8: return idx, x
9: end if

10: end for
11: return no knee
12: end function

TTK is the first of the metrics that is computed with this algorithm. It is the value

of the timestamp at which FINDKNEE identifies a knee. In the results presented later

in this chapter, we compare Times to Knee across tool configurations to understand

the impact of corpus size (see Section 5.1.2) and input encoding on how quickly the

fuzzing campaign hits the knee.

CAK is the amount of code coverage at the time of knee, as identified by measuring

TTK according to the definition given previously. It is measured for a given function,

f , under configuration c, time-to-knee k, and random seed n, as given in Equation 7.5,

which references the definition of CumCov from Equation 7.2.

CAK f ,c,k,n = CumCov({ f }, c, k, n) (7.5)

Finally, the CAK/TTK ratio is simply computed by dividing the coverage at the

knee by the time at which the knee was found. In terms of the equations given previ-

ously, this is defined as follows in Equation 7.6, where k is the time-to-knee for function

f under configuration c and random seed n.

CAK/TTK f ,c,k,n =
CAK f ,c,k,n

k
(7.6)

Chapter 7. Evaluation 74

When comparing tool configurations, we examine the means of these values across

all independent fuzzing campaigns (functions fuzzed across repos * 5 indepedent tri-

als). We also perform hypothesis tests of difference in distribution with the Mann-

Whitney U test, as recommended by Klees et al. [70] and Arcuri and Briand [3], and

we compute effect size with Vargha and Delaney’s Â12 [131].

7.2.2 RQ2. How does the configuration of the tool affect fuzzing per-

formance?

The ratio of use of fresh inputs generated by ACL2s and inputs produced by mutation

of old inputs is configurable in the tool. Coverage-guided mutation can also be con-

trolled by adjusting corpus size. For this RQ, we explore how to achieve good fuzzing

performance by tuning these parameters.

Inspired by previous fuzzing works, we measure performance in code coverage,

crashes found. We also perform a CAK/TTK (see Section 7.2.1) analysis to under-

stand what configuration of the tool best satisfies the evaluation goal of understand-

ing how to configure the tool to quickly and comprehensively explore the state space.

Finally, following previous work [3, 59], we perform a survival analysis of crashes

found, which will be described later in this section.

For brevity, we define a notation to describe experimental configurations in this

RQ. The form <corpus_size>_<acl2s_reachout_freq> describes an experimental con-

figuration with the corpus size, |C| and acl2s_reachout_freq as given. Section 5.2.4

contains the definition of acl2s_reachout_freq. For example, 100_0.1 describes a

configuration with |C| = 100, and acl2s_reachout_freq = 0.1. When the configura-

tion string is preceded by a repository name, e.g. mypy_100_0.1, this indicates that the

associated results and data pertain only to the fuzzing activity from that repository.

Chapter 7. Evaluation 75

In the following subsections, we introduce our methodology for crash deduplica-

tion and filtering, which will inform the discussion of survival analysis methodology

afterward.

Crash Deduplication

Klees et al. [70] explore the pitfalls of two common bug deduplication methods: stack

hash-based deduplication and coverage profile-based deduplication. Both of these

approaches may not accurately reflect the actual "bugs" in a program, and the authors

recommend counting "ground truth bugs," which map crashing inputs before some

patch P that cease to cause crashes after P. Due to time and resource constraints,

however, we do not have access to ground truth bugs, so we instead generate a set of

crash classes, defined in Definition 4.

Definition 4. A crash class is a family of exceptions or abnormal termination behaviors–e.g.

segfault. Membership in the class is determined by the last N stack frames that refer to code

locations in the code-under-test, as well as the failure type.

We make no upfront claim that each crash class corresponds to a bug, unless explic-

itly indicated as such by a developer. To produce a best-effort count of crash classes,

we use a stack trace-based deduplication, with some additional filtering, where we in-

dex a crash using N of the last traceback elements along with the type of exception that

was thrown (we did not encounter any abnormal program terminations in this eval-

uation). In this evaluation, we choose N = 3, because since we are fuzzing libraries

bottom-up, the call stacks of crashes tend not to be very deep.

We also perform some other preprocessing steps of the exception call stacks. If a

frame is repeated many times, Python will collapse the repeated frames with a line

Chapter 7. Evaluation 76

that says [Previous line repeated N times]. In cases where this line appears in the

last few lines of the stack trace printout, and N is different, this causes the stack traces

to mismatch. So, we "unroll" this line before comparing.

Crash Filtering

The type hint fuzzer has managed to identify many crashes in the 5 repositories se-

lected for RQ2 and RQ3. To pare the list of crashes down to something that is more rep-

resentative of legitimate bugs, we apply two heuristics. First, we exclude all crashes

that originated from intentionally thrown exceptions. We check this by looking for

the keyword "raise", which is used to trigger an exception manually, in the last line

of the exception traceback. Second, we filter out exceptions with types in a pre-

defined list that we consider to be likely to be due to a filesystem configuration or

external environment that the code did not expect. Currently, we filter out the fol-

lowing set of exceptions: {SystemExit, ModuleNotFoundError, FileNotFoundError,

UnicodeEncodeError}. SystemExit is raised when user code intentionally terminates

the program, so reporting this as unintended behavior typically does not make sense.

However, it is true that SystemExit could be raised under the wrong circumstances,

so there is a case to be made for removing this from the filtered set in future evalua-

tion. ModuleNotFoundError is raised when a module cannot be found and imported.

We attempt to install dependencies of the repositories that we evaluate against based

on a pyproject.toml file if it exists, but there may be hidden challenges with repli-

cating the development environment for the package that we did not investigate.

FileNotFoundError is raised when a file on disk is not found. This is typically not

a crash that warrants investigation because this is a normal signal to a developer that

something is misconfigured in the environment; for this reason, we do not report it.

UnicodeEncodeError is an exception that is often triggered by pickle, but our custom

Chapter 7. Evaluation 77

encoding does not due to the way they handle Unicode strings differently. We are

continuing to investigate how to modify our encoding to handle Unicode strings sim-

ilarly to pickle in order to trigger these exceptions. These exceptions typically occur

when attempting to print a malformed Unicode string.

Crash Survival Analysis

An important characteristic of fuzzer performance is how quickly crashes are found.

The time it takes to find a crash is known as how long that crash "survives" [59]. The

survival analysis we perform has two parts. First, following in the footsteps of previ-

ous work [59, 12, 3, 131, 64], we compute Kaplan-Meier survival curves, with confi-

dence intervals [64]. Secondly, we compute hypothesis tests of difference in Restricted

Mean Survival Time (RMST). RMST is essentially the integral of the survival function,

and can be regarded as a cumulative amount of "survival" represented by the curve.

We choose to compare RMST because previous work in the medical field [51, 110, 8]

has recommended the use of this metric as a better summary metric for survival com-

parison. Unlike the log-rank test which is used in Herrera et al. [59], comparisons of

restricted mean survival time do not assume proportional hazards [51]. To statistically

compare approaches, we use the survRM2 R package [22] to perform hypothesis tests of

the difference between RMST. We present two-tailed hypothesis tests of difference in

RMST, pairwise by configuration, with p-values corrected with the Holm-Bonferroni

method [60].

7.2.3 RQ3. Does the tool find issues that developers care about?

This research question focuses on the practical value that the tool provides. We define

an "issue" to be one of the two types of feedback that the tool provides: a return type

annotation mismatch, or a crash. Recall that we define a crash to be an exception or

Chapter 7. Evaluation 78

other abnormal program termination. To evaluate this practical value, we conduct

a manual analysis of issues that were discovered during the evaluation of RQ2 and

submit crashes that are likely candidates to be bugs to repository maintainers, based

on the criteria described in the following. If the repository maintainers conclude that

the proposed bug report or pull request is worthwhile (that is, a repository maintainer

fixes the issue, encourages us to fix the issue, or merges in a pull request that we have

opened), then we declare that this issue is a true positive.

Our method for classifying issues is given as follows. We use the same crash dedu-

plication and filtering methodology as given in Section 7.2.2.

Qualitative Issue Classification

After crashes have been deduplicated in filtered, as described in Section 7.2.2, we

merge this set of crashes with the set of return type annotation mismatches to pro-

duce the full set of issues. We then categorize each issue according to a qualitative

scheme, given in Table 7.1. Type annotation mismatches fall into the TE category, and

all other categories describe attributes of exceptions. The ER category describes repro-

duction from the "top-level," which means that the crash can be reproduced by passing

some input through the codebase’s intended API. In the case of mypy, for example, this

would mean passing a pathological Python file in through the command-line interface.

With this scheme, we analyze all issues found under any configuration and under

any random seed in the 5 repositories cselected for RQ2 and RQ3. When manually

analyzing a crash, we first attempt to understand the cause of the crash, and apply

the categorizations given in Table 7.1. If the exception is not EX (unmet external de-

pendencies), then we attempt to reproduce it by using the library through its intended

API. If we can reproduce the exception, we apply the ER category and report it. In

Chapter 7. Evaluation 79

Abbreviation Definition

EX exception is due to unmet dependencies on external environment
(filesystem, configuration, etc)

FO exception message clearly explains how to remedy the error (fix
obvious)

EE exception is expected/not indicative of issue (either by calling
code, indicated in docstring, noted as an "unrealistic" exception
by developers, or there is no reasonable way to fix the issue ex-
cept by raising another exception)

ER exception can be reproduced from top-level

LB exception is noted as a legitimate bug by the community

AE the exception is caused by supplying the wrong type of value
for an "Any" type annotation, indicating a type annotation
enhancement opportunity

TE the function returned the wrong type of value according to its an-
notation

TABLE 7.1: Exception category abbreviation definitions

cases where we cannot reproduce from the top-level, we check the FUT’s documenta-

tion and code that calls the FUT to see if the exception is expected and/or handled. If

so, we apply the EE categorization. If the EE categorization is not applied, we report

the bug and apply it if the repository maintainers indicate the issue is not legitimate.

We do not report bugs to which we have applied EX or EE prior to reporting. FO

is assigned based on a best-judgement interpretation of the exception message. LB is

assigned if and only if the issue was accepted as legitimate by the open-source commu-

nity. AE is applied if an exception is determined to be due to a value of an unexpected

type passed into a function that has a parameter type annotation of "Any," and these

exceptions are not reported. Data on the reported issues can be found in 7.12, and the

full data sheet for all issues can be found in Appendix B.

Chapter 7. Evaluation 80

7.2.4 Experimental Configurations

Here, we cover unfamiliar terminology and notation of experimental configurations,

so that the presentation of the results in Section 7.3 make sense.

Notational Conventions

We generally shorten experimental configurations to strings of the form:

{repository_name}_{corpus_size}_{encoding_or_acl2s_reachout_freq}

repository_name is the name of the repository. corpus_size is the corpus size,

and acl2s_reachout_freq is the frequency at which the fuzzing process reaches out

to ACL2s for a new type example.

7.2.5 Repository Selection Methodology

We selected 15 open-source Python projects against which to evaluate our tool. Due

to time constraints, we further pared this set down to 5 repositories for RQ2 and RQ3.

Table 7.2 contains a listing of them, and the number of function candidates that we ex-

tracted from each. "#FCs" contains the number of total function candidates extracted.

Note that this number may not be the number of functions we have data for in the

results–some functions were not importable dynamically, even though they were re-

solved by mypy, and some functions fell into infinite loops, or otherwise had signifi-

cant performance problems that prevented them from being fuzzed. In the results fur-

ther in this chapter, we include the number of functions for which we have results in

the relevant figures. Most repositories were picked from the list of "regular" type anno-

tation users according to Di Grazia and Pradel [28]. The paper characterizes a project

as a regular type annotation user if the number of type annotations grows roughly

at the same rate as the overall code size. Two other repositories, django and flask, are

Chapter 7. Evaluation 81

from the "sprinter" category, and not in the type annotation study, respectively. These

repositories were chosen due to their perceived popularity in the ecosystem as stan-

dard web server frameworks. For django, a version that is older than the latest, v4.2,

had to be used in fuzzing because the tool is written in Python 3.8. The Django project

has ceased to support Python 3.8 in versions after 4.2. Therefore, there is a risk that

bugs found in this repository are not current to the latest version. But, 4.2 has been

marked as a long-term support (LTS) version by Django, so any bugs found would

indeed still be relevant to many users of this version.1

TABLE 7.2: Selected Repositories

Name # Contributors # FCs Category Special Notes

mypy 664 196 Regular None

mindsdb 756 92 Regular None

django 2,502 64 Sprinter Had to use
stable/4.2.x to main-
tain compatibility with
Python 3.8

black 438 50 Regular None

manticore 99 45 Regular In maintenance mode

pipx 135 39 Regular None

httpx 215 37 Regular None

rich 232 33 Regular None

vibora 25 32 Regular Inactive

fuzzowski 2 28 Regular None

rlcard 35 13 Regular None

flask 715 12 N/A Not in Type Ann. Study

qutebrowser 355 12 Regular None

hbmqtt 35 8 Regular None

returns 50 4 Regular None

1https://www.djangoproject.com/download/

https://www.djangoproject.com/download/

Chapter 7. Evaluation 82

7.2.6 Environment

All experiments were run on MIT Supercloud [106] using Python 3.8.18.

7.2.7 Statistical Test Corrections

In order to be responsible in statistical inference, and to control the probability of Type

I Error, we have decided to apply the Holm-Bonferroni method, which is a sequen-

tially rejective procedure that aims to limit family-wise error rate [60]. The use of

such statistical corrections when performing multiple tests is suggested in Arcuri and

Briand [3]. Except when otherwise stated, we consider the statistical tests performed

in each RQ to be a "family," and correct all of the p-values simultaneously according to

this procedure.

7.3 Results

7.3.1 RQ1

Here, we present the results obtained to answer the first research question: How does

the input encoding affect fuzzing performance? We find strong evidence that our custom

encoding does not impair fuzzing, and in some ways it enhances the fuzzing perfor-

mance of the tool, when compared against pickle.

Post-Mutation Decode Rates

Put simply, the custom encoding decodes successfully post-mutation every time. pickle

decodes successfully post-mutation an average of 8.3% of the time.

Chapter 7. Evaluation 83

Finding 1 Our custom encoding works as designed: any encoded bit stream can

be successfully decoded after arbitrary transformation to the data section.

Unique and total points

Figures 7.1, 7.2, 7.3, and 7.4 show comparisons of the unique and total points for cor-

pus sizes 1, 5, and 10 for the 15 repositories. Each row of graphs contains three plots

which correspond to the 1, 5, and 10 corpus size comparisons. Each point on each

graph represents a single function, and the x-axis represents the ratio of average total

points obtained under custom to the average total points obtained under pickle. The

y-axis shows the same for unique points. Values of one (100) indicate equal numbers

of total/unique points. The dotted guidelines are drawn at the 100 lines to divide the

plots into four quadrants. Points in Quadrant I (top right) represent functions where

both total and unique point values are higher for custom than for pickle. Quadrant II

(top left) represents functions where total points are fewer for custom than for pickle but

unique points are higher. Quadrant III (bottom left) represents functions where pickle

does better for both quantities. Quadrant IV (bottom right) represents functions where

the total points for custom are greater than pickle but unique points are less. Note the

logarithmic scales on the axes.

There is a fairly consistent pattern among these graphs: most of the points lie in

Quadrant I, which implies that under custom, there is a both a greater amount of raw

fuzzing activity, and more of that fuzzing activity is unique. Points also consistently

lie on the border between Quadrants II and III, meaning that custom produces fewer

total trials throughout the fuzzing campaign but the same number of unique trials are

produced.

Chapter 7. Evaluation 84

To understand whether using the custom encoding has a significant impact on how

much of the sample space is explored, we have devised two statistical tests. First, we

test the hypothesis that the ratio of unique points to total points will be significantly

increased under the custom encoding relative to pickle. Table 7.3 presents results of

first batch of hypothesis tests. For each corpus size, we construct sample populations

corresponding to each of the two encodings out of the ratios of unique points to total

points for each independent trial of each function that was fuzzed across the 15 reposi-

tories. Each hypothesis test is a one-tailed Mann-Whitney U-test of the hypothesis that

the sample population corresponding to our custom encoding is stochastically greater

than that of the pickle encoding. Statistically significant results (post-Holm-Bonferroni

correction) have their p-values highlighted in green .

Secondly, we test the hypothesis that the number of total points is significantly

impacted. Table 7.4 contains the results of these tests. Each test is a two-tailed Mann-

Whitney U-test of stochastic difference. Any test for which we reject the null hypothe-

sis after Holm-Bonferroni correction (indicating that the custom and pickle total point

distributions are different) has its p-value highlighted in green .

The reason why the sample size (N), is less in the unique/total point ratio hypoth-

esis tests is because we filter out samples where the total points would be zero, leading

to a division by zero. It is unclear why total points would be zero–these must be situa-

tions where the fuzzer was unable to successfully call the function-under-test. Due to

time and resource constraints, we leave understanding this better to future work.

Note that all null hypotheses have been rejected, even after Holm-Bonferroni ad-

justment [60]. The unique/total point ratio tests indicate that there is a clearly signifi-

cant increase in unique fuzzing activity under our custom encoding, and interestingly,

the effect is more pronounced as the corpus grows larger (Â = 0.6005 for |C| = 1,

Â = 0.6353 for |C| = 10). Recall also that for this RQ, we are only using the "shape"

Chapter 7. Evaluation 85

FIGURE 7.1: RQ1 Custom / Pickle unique and total point ratios, part 1

Chapter 7. Evaluation 86

FIGURE 7.2: RQ1 Custom / Pickle unique and total point ratios, part 2

Chapter 7. Evaluation 87

FIGURE 7.3: RQ1 Custom / Pickle unique and total point ratios, part 3

Chapter 7. Evaluation 88

FIGURE 7.4: RQ1 Custom / Pickle unique and total point ratios, part 4

Chapter 7. Evaluation 89

TABLE 7.3: Unique/Total Point Ratio Hypothesis Tests

Test C > P?, |C| = 1 C > P?, |C| = 5 C > P?, |C| = 10

Sample Medians P: 0.05998 P: 0.03315 P: 0.10758
C: 0.06667 C: 0.15043 C: 0.48045

Sample Means P: 0.24805 P: 0.23379 P: 0.22261
C: 0.40934 C: 0.41661 C: 0.44295

Sample Size (N) 2,669 P: 2,540 P: 2,830
C: 2,538 C: 2,828

U-statistic 4277543.0 3974863.0 5084729.0

p-value 2.472 ∗ 10−37 3.036 ∗ 10−47 7.204 ∗ 10−70

Â Effect Size
0.6005 0.6166 0.6353
(0.5998, 0.6008) (0.6160, 0.6171) (0.6349, 0.6359)

TABLE 7.4: Total Point Hypothesis Tests

Test C 6= P?, |C| = 1 C 6= P?, |C| = 5 C 6= P?, |C| = 10

Sample Medians P: 7625.5 P: 5863.5 P: 7947.5
C: 18725.5 C: 18199.0 C: 25867.5

Sample Means P: 62291.34 P: 53694.75 P: 58645.17
C: 229174.63 C: 316258.30 C: 362551.97

Sample Size (N) 2,700 2,570 2,860

U-statistic 3935159.5 3772902.0 4890565.0

p-value 4.072 ∗ 10−7 9.233 ∗ 10−19 1.217 ∗ 10−37

Â Effect Size
0.5398 0.5712 0.5979
(0.5392, 0.5402) (0.5705, 0.5716) (0.5972, 0.5982)

information of the corpus elements, and scrambling the data. According to the in-

terpretative guidance given in Vargha and Delaney [131], the effect size is "small" for

|C| = 1, 5, but approaches a "medium" effect size for |C| = 10. The total point ratio

null hypotheses were also rejected. The difference is also in favor of the custom en-

coding. In summary, not only is there more unique fuzzing activity under the custom

encoding, but there is also more overall fuzzing activity under the custom encoding.

These results strongly support the effectiveness of the custom encoding.

Chapter 7. Evaluation 90

Finding 2 There is clear statistically significant evidence that there is both more

unique fuzzing activity under the custom encoding, and more overall fuzzing activity

under the custom encoding. These results strongly support the effectiveness of the

encoding design in enabling the fuzzer to better explore the space of possibilities.

Coverage Growth

Figures 7.5, 7.6 and 7.7 show the cumulative coverage curves for the 15 repositories

that were tested (note that it is not an error that coverage for the returns repository is

a flat line–none of the 4 extracted functions in the repository were successfully fuzzed

across all five independent trials and across all configurations). The solid lines repre-

sent mean statement coverage across all function bodies that were fuzzed throughout

the 440 seconds. The dashed lines represent upper 95% confidence interval bounds,

and the dotted lines represent lower 95% confidence interval bounds. A vertical tick

on the solid line, if it is present, represents the knee that was detected on the curve,

according to our definition in 13. There is a fair amount of variability between the

repositories, but the general pattern is that the custom encoding curves tend to achieve

higher coverage than the pickle curves. The knees also tend to occur earlier for our

custom encoding, and the curves up to the knee for the custom encoding also tend to

have higher slopes. Next, we compare time-to-knee, coverage-at-knee, and the ratio

of the two to provide a more numerical comparison.

Chapter 7. Evaluation 91

Finding 3 As expected, and as pointed out also by Klees et al. [70], there is vari-

ability in the amount of coverage obtained by each approach, and there is variability

across repositories as to which approach does best. The general pattern that can be

observed in the graphs is that the custom encoding approaches usually outperform

the pickle approaches. Which size of corpus maximizes coverage across each repo is

variable as well.

TTK, CAK, and CAK/TTK

To judge whether our encoding is better at facilitating effective fuzzing, we want to

identify whether 1) our encoding reaches a "knee" quickly, indicating that it can allow

the fuzzing algorithm to quickly explore the space, and 2) the coverage when that knee

is reached is high, indicating the fullness with which the fuzzing algorithm is able to

explore before hitting a wall. Figure 7.8 shows mean TTK for all independent fuzzing

trials (416 function candidates in 15 repos * 5 random seeds = 2,080). The orange line

shows mean TTK, in seconds for our custom encoding, while pickle is shown in the

blue line. The gray whiskers represent 95% confidence intervals. In this graph, lower

is better, since we want to measure how quickly the state space is explored. The cus-

tom encoding performs about as well as pickle when corpus size is 1 or 5, but pickle

interestingly exhibits an increasing time-to-knee as the size of the corpus increases.

This can be explained by the fact that random mutation of pickle files produces files

that exhaust memory on decoding, slowing down the fuzzing process, and this occurs

more for larger corpora because random mutation is more likely to generate pickle ob-

jects that decode with these memory usage problems. We have observed and collected

a number of such occurrences throughout the process of running these experiments.

Chapter 7. Evaluation 92

FIGURE 7.5: RQ1 Cumulative Coverage, Part 1

Chapter 7. Evaluation 93

FIGURE 7.6: RQ1 Cumulative Coverage, Part 2

Chapter 7. Evaluation 94

FIGURE 7.7: RQ1 Cumulative Coverage, Part 3

Chapter 7. Evaluation 95

FIGURE 7.8: Mean times-to-knee across all successfully fuzzed functions
in the 15 repos

Figure 7.9 shows the mean coverage at the knee. This value is calculated simply

be taking the statement coverage of the function-under-test for each trial at the time

of knee, calculated according to the definitions given in Section 7.2.1. Here, higher is

better, since the unit is statements covered, and we have non-overlapping confidence

intervals across all three corpus size configurations. When the knee is hit, one can

expect our custom encoding to have covered an additional 0.4 statements in the body

of the function being tested, approximately. Note that coverage in this case does not

include coverage of function bodies other than the one being tested. This is a limitation

of our analysis currently that we hope to improve upon in future work.

Putting this all together, 7.10 shows the CAK/TTK ratios for the six configura-

tions. This figure summarizes the behavior we are optimizing for, hitting the knee

quickly with greater coverage, into a single metric. Again, 95% confidence intervals

Chapter 7. Evaluation 96

FIGURE 7.9: Mean Coverage-at-knee across all successfully fuzzed func-
tions in the 15 repos

are given in the gray whiskers above and below the line. Notice that all custom encod-

ing configurations have confidence intervals that are non-overlapping with any pickle

configurations. From these results, we conclude that our custom encoding is achiev-

ing its intended goal to facilitate effective fuzzing. Given this and the other security

considerations that motivate us to avoid using pickle, we evaluate the following RQs

using the custom encoding exclusively, and encourage all potential users of this tool

to exclusively use the custom encoding as well.

Finally, we present the results of statistical tests of CAK/TTK ratio between pickle

and the custom encoding. Table 7.5 shows the results. Tests for which the null hy-

pothesis was rejected, after Holm-Bonferroni correction [60] have their p-values high-

lighted in green . Note that all null hypotheses have been rejected. The Â effect sizes

fall into the "small" effect size range, as specified by Vargha and Delaney [131]. Al-

though the effects are small, it is encouraging that these results do not contradict the

Chapter 7. Evaluation 97

FIGURE 7.10: Mean CAK/TTK ratios across all successfully fuzzed func-
tions in the 15 repos

earlier findings. Overall, there is strong evidence that the custom encoding, when

compared to pickle, has a pronounced impact on the effectiveness of fuzzing, both in

terms of the amount of input space exploration, and in the amount of coverage ob-

tained in within short periods of time.

Finding 4 CAK/TTK analysis demonstrates that the custom encoding achieves

more coverage faster on a statistically significant basis. We conclude that this, along

with the other findings for this RQ, and in light of pickle’s security concerns, justifies

the exclusive use of the custom encoding in our tool going forward.

Chapter 7. Evaluation 98

TABLE 7.5: RQ1 CAK/TTK Ratio Hypothesis Tests

Test C > P?, |C| = 1 C > P?, |C| = 5 C > P?, |C| = 10

Sample Medians P: 0.03135 P: 0.03138 P: 0.03138
C: 0.03273 C: 0.03328 C: 0.03327

Sample Means P: 0.04034 P: 0.04067 P: 0.04120
C: 0.04636 C: 0.04859 C: 0.05044

Sample Size (N) 2,080 2,080 2,080

U-statistic 2389827.0 2360841.5 2386624.0

p-value 2.385 ∗ 10−9 1.633 ∗ 10−7 3.891 ∗ 10−9

Â Effect Size
0.5524 0.5457 0.5516
(0.5519, 0.5530) (0.5450, 0.5461) (0.5511, 0.5521)

7.3.2 RQ2

Here, we answer the second research question, "How does the configuration of the tool

affect fuzzing performance?" We perform an evaluation across a variety of tool config-

urations, where we tune two parameters: acl2s_reachout_freq, which controls the

weighting of selection between coverage-guided mutation input and fresh examples

from ACL2s, and corpus size (|C|). Recall that we notate experimental configurations

with values for these parameters separated by underscores. For example, 100_0.2

represents the configuration in which corpus size, |C|, equals 100, and we reach out to

ACL2s for fresh examples 20% of the time, using coverage guided mutation the other

80%. The ACL2s-only configuration is notated as acl2s.

To understand the effect of tool configuration on the two core fuzzing metrics, cov-

erage and crashes triggered, we present cumulative code coverage throughout the

fuzzing campaign, as in the last section, as well as Coverage At Knee/Time-to-Knee

ratios to show how quickly different configurations can explore the search space. We

Chapter 7. Evaluation 99

compute statistical tests of difference in CAK/TTK pairwise by approach. Follow-

ing Klees et al. [70], we also present cumulative crashes found. Finally, to quan-

tify how different approaches perform in terms of bug discovery, we perform sur-

vival analysis [3]. Kaplan-Meier survival curves for each configuration are given, and

we compute pairwise statistical tests of difference in Restricted Mean Survival Time

(RMST) [64].

We perform a mainline evaluation for RQ2 with the following configurations: 1_0,

100_0, 10000_0, 1_0.1, 100_0.1, 10000_0.1, 1_0.2, 100_0.2, 10000_0.2, and acl2s.

Due to time and resource constraints, we evaluate only on mypy, mindsdb, django, black,

and manticore. We selected these five because they are the repositories with the most

extracted function candidates. For reasons that will be elucidated shortly, we also

perform an auxiliary evaluation on just mypy with the following additional configu-

rations: 100_0.5, 100_0.8, and 100_1.0. mypy is chosen because this is the repository

with the greatest number of extracted function candidates. Again due to time and

resource constraints, we could not extend this auxiliary evaluation to the other four

repositories and make it part of the mainline. This will be improved in future work.

Furthermore, we encourage interpretation of the results contained in this section

with care. The experimental design we have executed in this work compares config-

urations based on timeouts; timeouts are useful to evaluate on because, from the per-

spective of an end user, time is what matters most. However, this iteration of the TYPE

HINT FUZZING implementation has not been extensively optimized, and differences

in speed between independent trials and tool configurations may paint a misleading

picture of the respective abilities of each configuration. Especially because we use a

relatively short timeout per function candidate (440 seconds), inefficiencies in the use

of time by various parts of the algorithm, such as corpus generation, filtering, and

other startup costs can greatly affect performance metrics. We discuss these and other

Chapter 7. Evaluation 100

thoughts for improvement of this evaluation further in Chapter 8.

Cumulative Coverage

Figures 7.11 and 7.12 show cumulative coverage growth over 440 seconds of fuzzing

for the five repositories. For ease of viewing, the evaluated configurations are split

across two figures for each repository. There are no obvious consistent trends, but we

make four observations:

1. the acl2s experiments (purple lines on the right column of plots) seem to consis-

tently achieve the greatest or near-greatest coverage and they achieve it quickly

2. having a higher acl2s_reachout_freq seems to negatively affect the rate of new

coverage gained up to the knee (compare *_100_0 in the left column of figures to

*_100_0.2 on the right, for instance), but coverage is nearly equal by the end of

the fuzzing campaign

3. very large corpora (i.e. |C| = 10, 000) have a drastic negative effect on code

coverage for some repositories

4. the first "knee" the is found is often not the end of coverage gains, and in some

repositories, such as mypy, coverage appears to be increasing at the end of the

fuzzing campaign, suggesting again that the timeout of 440 seconds is too short

As acl2s_reachout_freq approaches 1, fuzzing should become increasingly indistin-

guishable from pure ACL2s-driven fuzzing (acl2s configuration), except potentially

in execution speed. Since acl2s does very well in code coverage, perhaps the rea-

chout frequency choices of 0, 0.1, and 0.2 are too low. We initially expected that even

0.2 would be rather high, and would hinder the fuzzer’s ability to mutate interesting

inputs. The third observation corroborates Herrera et al. [58] in that smaller corpora

Chapter 7. Evaluation 101

lead to more efficient fuzzing, although perhaps for a different reason: in our exper-

imentation, we observed computational slowdown due to resource strain when ma-

nipulating large corpora, which consequently hindered fuzzing performance. We also

do not perform any corpus minimization, which means that a 10,000 element corpus

may contain many redundant inputs. In this evaluation, based on coverage obtained

by each configuration, it seems that 100 corpus elements is a good balance between

too few and too many.

In the next subsection, we transition to a more quantitative analysis by reviewing

CAK/TTK ratios and performing hypothesis tests of statistical difference.

Finding 5 Pure ACL2s-driven fuzzing (acl2s) performs best in code coverage for

the configurations studied. However, the configurations studied represent a narrow

band of the possibilities, and the story may change in a more comprehensive eval-

uation. Also, very large corpora place a burden on the fuzzing process, hindering

code coverage (in part due to increased computational requirements). 100 corpus

elements seems to be a reasonable balance between too few and too many, as config-

urations with |C| = 100 also achieve coverage comparable to acl2s.

CAK/TTK Ratios

Figure 7.13 shows the mean CAK/TTK ratios, with bootstrapped 95% confidence in-

tervals, for each configuration. The means are taken over all independent trials of

function candidates across the five repositories we studied for this RQ. The trend of the

acl2s configuration outpacing all of the other fuzzing configurations becomes even

clearer. Interestingly, it also seems that, in the set of configurations studied, greater |C|

and greater acl2s_reachout_freq both have negative effects on CAK/TTK ratio.

Chapter 7. Evaluation 102

FIGURE 7.11: RQ2 Cumulative Coverage: mypy, mindsdb, django

Chapter 7. Evaluation 103

FIGURE 7.12: RQ2 Cumulative Coverage: black, manticore

Chapter 7. Evaluation 104

FIGURE 7.13: RQ2 CAK/TTK ratios

Auxiliary Evaluation

It initially seemed reasonable to expect that even small amounts of ACL2s input would

be able to greatly assist the fuzzer in achieving more coverage faster, but, under the

conditions of this evaluation, the previous results in this section have indicated that

this is false. Since the range of acl2s_reachout_freq values we included in the initial

evaluation only goes up to 0.2, it remains plausible that higher values should start to

approach, or even exceed, acl2s in performance. Intuitively, as acl2s_reachout_freq

approaches 1, the Atheris-ACL2s hybrid should begin to behave more like ACL2s

alone. To test this hypothesis, we perform a small auxiliary evaluation on mypy with

additional configurations mypy_100_0.5, mypy_100_0.8, and mypy_100_1.0. We choose

mypy because it is the repository with by far the largest number of function candidates

in our selection.

Chapter 7. Evaluation 105

FIGURE 7.14: RQ2 Auxiliary Eval. CAK/TTK ratios

Figure 7.14 contains mean CAK/TTK ratios with bootstrapped 95% confidence in-

tervals for the auxiliary evaluation, including the three new configurations. Here,

we see that our hypothesis is confirmed: as acl2s_reachout_freq approaches 1, the

performance becomes comparable to ACL2s alone. In this case, the CAK/TTK for

mypy_100_0.5, mypy_100_0.8, and mypy_100_1.0 exceed that of acl2s. We see that this

trend is confirmed in Figure 7.15, which shows cumulative coverage across all con-

figurations for mypy. Unfortunately, due to time and resource constraints, we could

not complete this evaluation across the other repositories that are studied in RQ2, but

there is no reason that we see to believe that the trend would not generalize. For the

remainder of the evaluation of RQ2, we will present figures from the auxiliary evalu-

ation alongside figures from the original RQ2 evaluation.

Following the guidance of Klees et al. [70] and Arcuri and Briand [3] to justify

decision making with statistical rigor, we also perform hypothesis tests of statistical

difference in CAK/TTK with the Mann-Whitney U-test, pairwise by configuration,

Chapter 7. Evaluation 106

with p-values adjusted according to Holm [60]. The null and alternative hypotheses

of each test are given as follows:

• H0: The distributions of the two samples are equal

• H1: The distributions of the two samples are not equal

The p-value "family," for the purposes of Holm-Bonferroni correction [60], includes

these results, and the results of the RMST comparison later in this section (we treat

the mainline RQ2 evaluation and the auxiliary evaluation as two separate "families"

that are corrected separately). The results for the RQ2 mainline evaluation are given

in Table 7.8. The results for the auxiliary evaluation are given in Table 7.9. To aid in

interpreting these, and following the guidance of Arcuri and Briand [3], the median

CAK/TTK ratios for each configuration in the mainline and auxiliary evaluations are

given in Tables 7.6 and 7.7, respectively. Distributions of CAK/TTK for the auxiliary

evaluation are also given in 7.16. In these tables, the Vargha-Delaney Â12 effect size

is computed with sample 1 being the row and sample 2 being the column. Therefore,

effect sizes above 0.5 indicate that the CAK/TTK of the configuration of the row of

the cell is stochastically greater than that of the column, and vice versa for effect sizes

below 0.5 [131]. Statistically significant results are highlighted in green . The first line

of each cell gives the U-statistic of each test (U-statistics are omitted in Table 7.9 due to

space constraints), the second line gives the point estimate of Â12, the third line gives

a bootstrapped confidence 95% interval for A, and the fourth line gives the p-value.

The results in Table 7.8 clearly indicate that acl2s achieves better CAK/TTK on a

statistically significant basis than every configuration tested except 1_0. The configu-

rations with |C| = 10, 000, conversely, show statistically significantly worse CAK/TTK

than almost every other configuration tested. Another strong signal is displayed in the

100_0 column, where it achieves higher CAK/TTK on a statistically significant basis

Chapter 7. Evaluation 107

FIGURE 7.15: RQ2 Auxiliary Eval. Cumulative Coverage for mypy

than every other configuration except 1_0 and 1_0.1, where the null hypotheses were

not rejected, and acl2s, where acl2s performs better.

Experiment Median CAK/TTK

1_0 0.032960
100_0 0.033074
10000_0 0.031201
1_0.1 0.033044
100_0.1 0.033064
10000_0.1 0.031394
1_0.2 0.033059
100_0.2 0.032802
10000_0.2 0.016551
acl2s 0.047296

TABLE 7.6: RQ2 Median CAK/TTK Ratios

The results from the auxiliary evaluation in Table 7.9 are less clear. Interestingly, it

seems that the impact of the higher acl2s_reachout_freq configurations is not as pro-

nounced as Figure 7.14 would indicate: none of the null hypotheses in the 100_0.5,

100_0.8, and 100_1.0 rows are rejected except for those in the 10000_0 column, and

Chapter 7. Evaluation 108

Experiment Median CAK/TTK

1_0 0.032947
100_0 0.033074
10000_0 0.031201
1_0.1 0.038910
100_0.1 0.036759
10000_0.1 0.032759
1_0.2 0.036757
100_0.2 0.033061
10000_0.2 0.032742
100_0.5 0.048637
100_0.8 0.048636
100_1.0 0.048636
acl2s 0.049318

TABLE 7.7: RQ2 Auxiliary Eval. Median CAK/TTK Ratios

when one of these configurations is compared to another. The acl2s results are sur-

prising as well: acl2s still achieves statistically significant performance gains over

100_0.5, 100_0.8, and 100_1.0, but not 100_0, 100_0.1, or 100_0.2; we do not reject

the null hypotheses in the latter cases. The strongest signal from the auxiliary evalua-

tion that concurs with the mainline evaluation is that configurations with |C| = 10, 000

perform significantly worse.

FIGURE 7.16: RQ2 Auxiliary Eval. CAK/TTK Distributions

Chapter 7. Evaluation 109

It is important to note that Figures 7.13 and 7.14 are showing mean CAK/TTK,

but the distributions are strongly non-normal, and they do not exhibit variance homo-

geneity, as shown in Figure 7.16.

Finding 6 When examining Coverage At Knee/Time-to-Knee, a measure of how

much code can be covered per unit time, before a "knee" is encountered where

progress slows, the strongest signal is that |C| = 10, 000 is too large, and evidently

hinders fuzzing progress. |C| = 100 again appears to be the best all-around choice,

with mixed results on what value of acl2s_reachout_freq is best. More work is

needed to fully understand the impact of this parameter. acl2s, on the other hand,

consistently performs very well at achieving code coverage quickly.

We now turn our study to the ability of each configuration to find crashes in code-

under-test.

C
hapter

7.
Evaluation

110
1_0 100_0 10000_0 1_0.1 100_0.1 10000_0.1 1_0.2 100_0.2 10000_0.2

100_0

U = 697438.500
Â = 0.509
(0.509, 0.510)
p = 0.4263

10000_0

U = 551740.000
Â = 0.403
(0.402, 0.404)
p = 4.0348 ∗ 10−16

U = 579532.000
Â = 0.423
(0.423, 0.424)
p = 1.1807 ∗ 10−10

1_0.1

U = 680573.500
Â = 0.497
(0.496, 0.498)
p = 0.8123

U = 645311.500
Â = 0.471
(0.471, 0.472)
p = 0.0165

U = 792493.000
Â = 0.579
(0.578, 0.580)
p = 3.3627 ∗ 10−11

100_0.1

U = 651310.500
Â = 0.476
(0.475, 0.476)
p = 0.0423

U = 616457.500
Â = 0.450
(0.449, 0.451)
p = 3.0759 ∗ 10−05

U = 763128.000
Â = 0.557
(0.557, 0.558)
p = 1.3475 ∗ 10−06

U = 679250.500
Â = 0.496
(0.496, 0.497)
p = 0.7500

10000_0.1

U = 528409.500
Â = 0.386
(0.385, 0.387)
p = 1.0550 ∗ 10−21

U = 565014.500
Â = 0.413
(0.412, 0.414)
p = 2.1802 ∗ 10−13

U = 691554.000
Â = 0.505
(0.504, 0.506)
p = 0.6613

U = 557549.500
Â = 0.407
(0.406, 0.408)
p = 6.6735 ∗ 10−15

U = 605831.500
Â = 0.443
(0.442, 0.443)
p = 1.3523 ∗ 10−06

1_0.2

U = 661078.000
Â = 0.483
(0.482, 0.484)
p = 0.1522

U = 627078.000
Â = 0.458
(0.458, 0.459)
p = 0.0004

U = 772857.000
Â = 0.565
(0.564, 0.565)
p = 5.7128 ∗ 10−08

U = 689220.000
Â = 0.503
(0.503, 0.504)
p = 0.7701

U = 671765.000
Â = 0.491
(0.490, 0.492)
p = 0.4369

U = 792972.000
Â = 0.579
(0.578, 0.580)
p = 2.6270 ∗ 10−11

100_0.2

U = 633649.000
Â = 0.463
(0.462, 0.463)
p = 0.0019

U = 601905.000
Â = 0.440
(0.439, 0.440)
p = 4.1538 ∗ 10−07

U = 744951.000
Â = 0.544
(0.543, 0.545)
p = 0.0002

U = 670254.000
Â = 0.490
(0.489, 0.491)
p = 0.3842

U = 646526.000
Â = 0.472
(0.471, 0.473)
p = 0.0200

U = 765176.000
Â = 0.559
(0.558, 0.560)
p = 6.8306 ∗ 10−07

U = 688579.000
Â = 0.503
(0.502, 0.504)
p = 0.8001

10000_0.2

U = 525649.500
Â = 0.384
(0.383, 0.385)
p = 2.0034 ∗ 10−22

U = 561906.500
Â = 0.410
(0.409, 0.411)
p = 5.1011 ∗ 10−14

U = 690997.000
Â = 0.505
(0.504, 0.505)
p = 0.6863

U = 554675.500
Â = 0.405
(0.405, 0.406)
p = 1.6131 ∗ 10−15

U = 583610.500
Â = 0.426
(0.426, 0.427)
p = 5.6964 ∗ 10−10

U = 657524.500
Â = 0.480
(0.479, 0.481)
p = 0.0963

U = 573003.000
Â = 0.419
(0.418, 0.419)
p = 7.5546 ∗ 10−12

U = 600943.000
Â = 0.439
(0.438, 0.440)
p = 2.7745 ∗ 10−07

acl2s

U = 725950.000
Â = 0.530
(0.530, 0.531)
p = 0.0110

U = 749616.000
Â = 0.548
(0.547, 0.548)
p = 6.5710 ∗ 10−05

U = 881823.000
Â = 0.644
(0.643, 0.645)
p = 1.0783 ∗ 10−33

U = 774591.000
Â = 0.566
(0.565, 0.567)
p = 3.3735 ∗ 10−08

U = 801346.000
Â = 0.585
(0.585, 0.586)
p = 8.0492 ∗ 10−13

U = 902053.000
Â = 0.659
(0.658, 0.660)
p = 1.3158 ∗ 10−40

U = 790918.000
Â = 0.578
(0.577, 0.578)
p = 6.9753 ∗ 10−11

U = 813575.000
Â = 0.594
(0.594, 0.595)
p = 2.5652 ∗ 10−15

U = 905180.000
Â = 0.661
(0.660, 0.662)
p = 9.7128 ∗ 10−42

TABLE 7.8: Hypothesis Test Results of Difference in CAK/TTK

C
hapter

7.
Evaluation

111

1_0 100_0 10000_0 1_0.1 100_0.1 10000_0.1 1_0.2 100_0.2 10000_0.2 100_0.5 100_0.8 100_1.0

100_0
Â = 0.552
(0.551, 0.553)
p = 0.0012

10000_0
Â = 0.424
(0.423, 0.425)
p = 2.4136 ∗ 10−06

Â = 0.450
(0.449, 0.451)
p = 0.0020

1_0.1
Â = 0.576
(0.575, 0.577)
p = 2.3131 ∗ 10−06

Â = 0.452
(0.451, 0.453)
p = 0.0029

Â = 0.571
(0.571, 0.573)
p = 9.3390 ∗ 10−06

100_0.1
Â = 0.571
(0.570, 0.572)
p = 1.0453 ∗ 10−05

Â = 0.450
(0.449, 0.451)
p = 0.0021

Â = 0.565
(0.564, 0.566)
p = 5.7948 ∗ 10−05

Â = 0.566
(0.565, 0.567)
p = 4.2160 ∗ 10−05

10000_0.1
Â = 0.414
(0.412, 0.415)
p = 8.5069 ∗ 10−08

Â = 0.439
(0.438, 0.440)
p = 0.0002

Â = 0.553
(0.551, 0.554)
p = 0.0011

Â = 0.417
(0.416, 0.418)
p = 2.4951 ∗ 10−07

Â = 0.421
(0.420, 0.422)
p = 1.1007 ∗ 10−06

1_0.2
Â = 0.568
(0.567, 0.569)
p = 2.7839 ∗ 10−05

Â = 0.445
(0.444, 0.446)
p = 0.0006

Â = 0.562
(0.561, 0.563)
p = 0.0001

Â = 0.563
(0.562, 0.564)
p = 9.9606 ∗ 10−05

Â = 0.427
(0.426, 0.427)
p = 5.2129 ∗ 10−06

Â = 0.575
(0.574, 0.576)
p = 3.0354 ∗ 10−06

100_0.2
Â = 0.554
(0.553, 0.555)
p = 0.0009

Â = 0.437
(0.436, 0.438)
p = 9.1112 ∗ 10−05

Â = 0.550
(0.549, 0.551)
p = 0.0021

Â = 0.549
(0.548, 0.550)
p = 0.0022

Â = 0.419
(0.419, 0.421)
p = 5.7448 ∗ 10−07

Â = 0.562
(0.561, 0.563)
p = 0.0001

Â = 0.557
(0.556, 0.558)
p = 0.0004

10000_0.2
Â = 0.413
(0.412, 0.415)
p = 8.0903 ∗ 10−08

Â = 0.439
(0.438, 0.440)
p = 0.0002

Â = 0.554
(0.553, 0.555)
p = 0.0007

Â = 0.417
(0.416, 0.418)
p = 2.4529 ∗ 10−07

Â = 0.421
(0.420, 0.422)
p = 1.1123 ∗ 10−06

Â = 0.437
(0.436, 0.438)
p = 0.0001

Â = 0.425
(0.423, 0.425)
p = 3.0116 ∗ 10−06

Â = 0.438
(0.437, 0.439)
p = 0.0001

100_0.5
Â = 0.487
(0.485, 0.488)
p = 0.4157

Â = 0.512
(0.511, 0.513)
p = 0.4585

Â = 0.643
(0.642, 0.644)
p = 7.6654 ∗ 10−19

Â = 0.490
(0.489, 0.491)
p = 0.5237

Â = 0.496
(0.494, 0.497)
p = 0.7833

Â = 0.508
(0.507, 0.509)
p = 0.6104

Â = 0.499
(0.498, 0.500)
p = 0.9393

Â = 0.511
(0.510, 0.512)
p = 0.4844

Â = 0.507
(0.506, 0.508)
p = 0.6867

100_0.8
Â = 0.487
(0.486, 0.488)
p = 0.4220

Â = 0.512
(0.511, 0.513)
p = 0.4496

Â = 0.643
(0.642, 0.644)
p = 6.4258 ∗ 10−19

Â = 0.490
(0.489, 0.491)
p = 0.5329

Â = 0.496
(0.495, 0.497)
p = 0.7954

Â = 0.508
(0.508, 0.510)
p = 0.5997

Â = 0.499
(0.498, 0.500)
p = 0.9508

Â = 0.512
(0.511, 0.513)
p = 0.4748

Â = 0.507
(0.506, 0.508)
p = 0.6752

Â = 0.412
(0.411, 0.413)
p = 4.0889 ∗ 10−08

100_1.0
Â = 0.487
(0.486, 0.488)
p = 0.4156

Â = 0.512
(0.511, 0.513)
p = 0.4585

Â = 0.643
(0.642, 0.644)
p = 7.6232 ∗ 10−19

Â = 0.490
(0.489, 0.491)
p = 0.5234

Â = 0.496
(0.494, 0.497)
p = 0.7831

Â = 0.508
(0.507, 0.509)
p = 0.6108

Â = 0.499
(0.498, 0.500)
p = 0.9389

Â = 0.511
(0.510, 0.512)
p = 0.4848

Â = 0.506
(0.506, 0.508)
p = 0.6871

Â = 0.411
(0.410, 0.412)
p = 3.4938 ∗ 10−08

Â = 0.588
(0.587, 0.589)
p = 4.0996 ∗ 10−08

acl2s
Â = 0.479
(0.478, 0.480)
p = 0.1921

Â = 0.502
(0.500, 0.502)
p = 0.9246

Â = 0.618
(0.617, 0.619)
p = 2.9340 ∗ 10−13

Â = 0.481
(0.480, 0.482)
p = 0.2272

Â = 0.484
(0.483, 0.485)
p = 0.3305

Â = 0.631
(0.630, 0.632)
p = 4.9544 ∗ 10−16

Â = 0.488
(0.487, 0.489)
p = 0.4596

Â = 0.500
(0.499, 0.501)
p = 0.9917

Â = 0.631
(0.630, 0.632)
p = 4.8169 ∗ 10−16

Â = 0.559
(0.558, 0.560)
p = 0.0002

Â = 0.559
(0.558, 0.560)
p = 0.0003

Â = 0.559
(0.558, 0.560)
p = 0.0002

TABLE 7.9: Hypothesis Test Results of Difference in CAK/TTK

Chapter 7. Evaluation 112

Cumulative Crash Counts

Figures 7.17 and 7.18 show the cumulative number of unique (based on our dedu-

plication criteria) crashes triggered by each configuration for each repo. These figures

suggest that, although pure ACL2s does quite well in detecting crashes, there are other

approaches that do equally well or better. It is worth recalling again, however, that the

stack trace deduplication methology has issues [70], but the relative performances of

the different configurations correlate with their cumulative coverages.

Figure 7.19 shows the cumulative crash counts for mypy in the auxiliary evalua-

tion. Although approaches which have higher acl2s_reachout_freq–and are there-

fore more similar to acl2s–perform better in terms of coverage and CAK/TTK, this

trend does not necessarily carry over to the number of unique crashes found. This

corroborates Klees et al. [70] who suggest that code coverage, while important, is not

the only way a fuzzer should be evaluated.

Crash Survival Analysis

Now, we compare survival curves for each configuration. In order for this compar-

ison to be statistically justified, we make the assumption that the survival times of

all detected crashes across all independent trials and repositories are identically dis-

tributed. This assumption is justified by the further assumption that the sample of

repositories, and therefore the function candidates in them, are representative of the

general population. Additionally, in survival analysis, the set of entities for which we

are measuring survival is typically known. In our case, the full set of crashes is un-

known, so we use as a proxy the union of all crashes found in any independent trial

in any repository in the configuration. Figure 7.20 shows these survival curves. The

shaded regions are 95% confidence intervals. Note that the y-axis is given in terms of

Chapter 7. Evaluation 113

FIGURE 7.17: RQ2 Cumulative Crashes: mypy, mindsdb, django

Chapter 7. Evaluation 114

FIGURE 7.18: RQ2 Cumulative Crashes: black, manticore

Chapter 7. Evaluation 115

FIGURE 7.19: RQ2 Auxiliary Eval. Cumulative Crashes

a theoretical α, which can be thought of as the probability that an unknown bug sur-

vives the 440 seconds of fuzzing. For the purposes of the following RMST analysis, we

assume α = 0. It is clear visually from this figure that the configuration with |C| = 100

and acl2s_reachout_freq = 0 has the lowest survival curve.

The auxiliary evaluation on mypy also exhibits this pattern. In Figure 7.21, we

observe the opposite pattern when compared to code coverage: crashes seem to be

triggered more quickly with lower values of acl2s_reachout_freq. These results are

counterintuitive, because it is expected that code coverage correlates, albeit sometimes

weakly [70], with crashes triggered. This demands further exploration that we could

not perform in this work due to time constraints.

Chapter 7. Evaluation 116

FIGURE 7.20: RQ2 Survival Curves

C
hapter

7.
Evaluation

117

FIGURE 7.21: RQ2 Auxiliary Eval. Survival Curves

Chapter 7. Evaluation 118

RMST Comparison

Table 7.10 shows the results of pairwise statistical hypothesis tests of difference in

RMST between configurations of the tool. Significant results after Holm-Bonferroni

correction [60] are highlighted in green . The first line in each cell shows the estimate

of the difference, the second line shows the lower and upper values of 95% confidence

intervals, and the third line shows the p-value. The differences in RMST are calculated

as row− col. A negative value, therefore, indicates that the configuration of the row

label has lower RMST, and vice versa for positive values. Recall that lower values of

RMST are better, as this indicates that crashes "survive" for a shorter amount of time.

The results for the auxiliary evaluation, presented in a similar way, are given in

Table 7.11. The consistent signal across both the mainline evaluation and the auxiliary

evaluation is that 100_0 has statistically significantly lower RMST for the known bugs

when compared to almost every other configuration. Notable exceptions are 100_0.1

and 100_0.2.

The findings here indicate that |C| = 100, with low (≤ 0.2) acl2s_reachout_freq

produce the best results in crash discovery, but again, more work is needed to under-

stand the main factors behind these results. Possible avenues of future exploration

include performing an audit of the exception deduplication methodology and looking

for patterns in the classes of exceptions that each configuration triggers.

Finding 7 The results for crash discovery indicate that |C| = 100, with

acl2s_reachout_freq ≤ 0.2 produce the best results. More work is needed, how-

ever, to fully understand these effects with a more comprehensive evaluation.

C
hapter

7.
Evaluation

119
1_0 100_0 10000_0 1_0.1 100_0.1 10000_0.1 1_0.2 100_0.2 10000_0.2

100_0
−23.095
(−37.252,−8.939)
p = 0.0014

10000_0
13.419
(−0.735, 27.572)
p = 0.0631

36.514
(22.355, 50.673)
p = 4.3196 ∗ 10−07

1_0.1
16.749
(2.469, 31.028)
p = 0.0215

39.844
(25.559, 54.129)
p = 4.5810 ∗ 10−08

3.330
(−10.952, 17.612)
p = 0.6477

100_0.1
−9.476
(−23.738, 4.787)
p = 0.1929

13.620
(−0.648, 27.888)
p = 0.0614

−22.894
(−37.160,−8.629)
p = 0.0017

−26.224
(−40.614,−11.835)
p = 0.0004

10000_0.1
30.770
(16.604, 44.937)
p = 2.0701 ∗ 10−05

53.866
(39.694, 68.038)
p = 9.3660 ∗ 10−14

17.352
(3.182, 31.521)
p = 0.0164

14.022
(−0.273, 28.316)
p = 0.0545

40.246
(25.968, 54.524)
p = 3.3000 ∗ 10−08

1_0.2
13.722
(−0.493, 27.937)
p = 0.0585

36.817
(22.597, 51.038)
p = 3.8887 ∗ 10−07

0.303
(−13.915, 14.522)
p = 0.9666

−3.027
(−17.370, 11.316)
p = 0.6792

23.198
(8.872, 37.524)
p = 0.0015

−17.048
(−31.279,−2.818)
p = 0.0189

100_0.2
−11.361
(−25.604, 2.883)
p = 0.1180

11.735
(−2.514, 25.984)
p = 0.1065

−24.779
(−39.026,−10.532)
p = 0.0007

−28.109
(−42.480,−13.738)
p = 0.0001

−1.885
(−16.239, 12.470)
p = 0.7969

−42.131
(−56.390,−27.872)
p = 6.9967 ∗ 10−09

−25.082
(−39.390,−10.775)
p = 0.0006

10000_0.2
32.509
(18.311, 46.708)
p = 7.2026 ∗ 10−06

55.605
(41.401, 69.809)
p = 1.6847 ∗ 10−14

19.091
(4.889, 33.292)
p = 0.0084

15.761
(1.434, 30.087)
p = 0.0311

41.985
(27.675, 56.295)
p = 8.8925 ∗ 10−09

1.739
(−12.475, 15.953)
p = 0.8105

18.787
(4.525, 33.050)
p = 0.0098

43.870
(29.579, 58.161)
p = 1.7816 ∗ 10−09

acl2s
−0.474
(−14.757, 13.809)
p = 0.9481

22.622
(8.333, 36.910)
p = 0.0019

−13.892
(−28.178, 0.393)
p = 0.0566

−17.222
(−31.632,−2.812)
p = 0.0192

9.002
(−5.391, 23.395)
p = 0.2203

−31.244
(−45.542,−16.946)
p = 1.8448 ∗ 10−05

−14.196
(−28.542, 0.151)
p = 0.0525

10.887
(−3.488, 25.261)
p = 0.1377

−32.983
(−47.313,−18.653)
p = 6.4453 ∗ 10−06

TABLE 7.10: RQ2 Hypothesis Test Results of Difference in RMST

C
hapter

7.
Evaluation

120
1_0 100_0 10000_0 1_0.1 100_0.1 10000_0.1 1_0.2 100_0.2 10000_0.2 100_0.5 100_0.8 100_1.0

100_0
−29.514
(−61.033, 2.005)
p = 0.0665

10000_0
58.176
(26.563, 89.789)
p = 0.0003

87.690
(56.186, 119.195)
p = 4.8865 ∗ 10−08

1_0.1
35.179
(3.223, 67.134)
p = 0.0310

64.692
(32.845, 96.540)
p = 6.8547 ∗ 10−05

−22.998
(−54.939, 8.943)
p = 0.1582

100_0.1
9.398
(−22.757, 41.553)
p = 0.5667

38.912
(6.864, 70.961)
p = 0.0173

−48.778
(−80.919,−16.637)
p = 0.0029

−25.780
(−58.258, 6.697)
p = 0.1198

10000_0.1
74.314
(42.851, 105.776)
p = 3.6678 ∗ 10−06

103.828
(72.474, 135.181)
p = 8.5596 ∗ 10−11

16.137
(−15.311, 47.586)
p = 0.3145

39.135
(7.343, 70.927)
p = 0.0158

64.915
(32.922, 96.908)
p = 6.9833 ∗ 10−05

1_0.2
33.058
(1.076, 65.040)
p = 0.0428

62.572
(30.697, 94.447)
p = 0.0001

−25.118
(−57.086, 6.850)
p = 0.1236

−2.120
(−34.427, 30.186)
p = 0.8976

23.660
(−8.844, 56.164)
p = 0.1537

−41.256
(−73.075,−9.436)
p = 0.0110

100_0.2
17.015
(−15.239, 49.270)
p = 0.3012

46.529
(14.381, 78.677)
p = 0.0046

−41.161
(−73.401,−8.921)
p = 0.0123

−18.163
(−50.739, 14.413)
p = 0.2745

7.617
(−25.155, 40.389)
p = 0.6487

−57.298
(−89.391,−25.205)
p = 0.0005

−16.043
(−48.645, 16.560)
p = 0.3348

10000_0.2
79.438
(47.937, 110.940)
p = 7.7131 ∗ 10−07

108.952
(77.559, 140.345)
p = 1.0296 ∗ 10−11

21.262
(−10.225, 52.749)
p = 0.1857

44.260
(12.429, 76.090)
p = 0.0064

70.040
(38.008, 102.071)
p = 1.8219 ∗ 10−05

5.124
(−26.212, 36.461)
p = 0.7486

46.380
(14.522, 78.238)
p = 0.0043

62.423
(30.292, 94.554)
p = 0.0001

100_0.5
31.528
(−0.639, 63.696)
p = 0.0547

61.042
(28.981, 93.103)
p = 0.0002

−26.648
(−58.802, 5.505)
p = 0.1043

−3.650
(−36.140, 28.840)
p = 0.8257

22.130
(−10.557, 54.816)
p = 0.1845

−42.786
(−74.791,−10.780)
p = 0.0088

−1.530
(−34.047, 30.987)
p = 0.9265

14.513
(−18.272, 47.297)
p = 0.3856

−47.910
(−79.954,−15.866)
p = 0.0034

100_0.8
60.045
(27.636, 92.455)
p = 0.0003

89.559
(57.256, 121.863)
p = 5.5150 ∗ 10−08

1.869
(−30.526, 34.264)
p = 0.9100

24.867
(−7.863, 57.596)
p = 0.1365

50.647
(17.722, 83.571)
p = 0.0026

−14.268
(−46.517, 17.980)
p = 0.3858

26.987
(−5.769, 59.743)
p = 0.1064

43.030
(10.008, 76.052)
p = 0.0106

−19.393
(−51.679, 12.894)
p = 0.2391

28.517
(−4.420, 61.454)
p = 0.0897

100_1.0
62.839
(30.471, 95.207)
p = 0.0001

92.353
(60.091, 124.615)
p = 2.0172 ∗ 10−08

4.663
(−27.692, 37.017)
p = 0.7776

27.660
(−5.028, 60.349)
p = 0.0972

53.441
(20.556, 86.325)
p = 0.0014

−11.475
(−43.682, 20.733)
p = 0.4850

29.781
(−2.934, 62.496)
p = 0.0744

45.824
(12.842, 78.805)
p = 0.0065

−16.599
(−48.845, 15.646)
p = 0.3130

31.311
(−1.586, 64.207)
p = 0.0621

2.794
(−30.339, 35.927)
p = 0.8687

acl2s
44.034
(11.559, 76.509)
p = 0.0079

73.548
(41.179, 105.917)
p = 8.4545 ∗ 10−06

−14.142
(−46.603, 18.319)
p = 0.3932

8.855
(−23.939, 41.650)
p = 0.5966

34.636
(1.647, 67.625)
p = 0.0396

−30.280
(−62.594, 2.035)
p = 0.0663

10.976
(−21.845, 43.797)
p = 0.5122

27.019
(−6.067, 60.105)
p = 0.1095

−35.404
(−67.756,−3.052)
p = 0.0320

12.506
(−20.495, 45.507)
p = 0.4576

−16.011
(−49.248, 17.226)
p = 0.3451

−18.805
(−52.002, 14.392)
p = 0.2669

TABLE 7.11: RQ2 Auxiliary Eval. Hypothesis Test Results of Difference in RMST

Chapter 7. Evaluation 121

7.3.3 RQ3

Now that we have analyzed the performance of the custom encoding in RQ1, and the

effects of tool configuration in RQ2, we ask our third research question, "Does the tool

find issues developers care about?" Recall from Section 7.2.3 that to produce the pool

of exceptions, we aggregated all crashes found in at least one independent trial for

all of the configurations evaluated in RQ2 (excluding the auxiliary evaluation), and

deduplicated them according to stack trace-based deduplication (with N, the number

of most recent stack frames to compare, equal to 3). This yielded 341 crashes, which

we manually analyzed and categorized. We filed 16 bug reports, many of which cover

several of the individual crashes (recall from Klees et al. [70] that stack trace-based

deduplication is imperfect–in our case, we observed overcounting of logical "bugs").

We decided to invest manual effort into collapsing crashes with similar causes into

single bug reports primarily to be courteous to the repository maintainers, so that the

they are not inundated with many bug reports that are very similar.

Reported Crashes

Table 7.12 shows the outcomes of the reported bugs as of the time of this writing. Re-

call that Table 7.1 gives the definitions of the abbreviations used in the column headers.

If none of the categories are checked, this indicates that the crash’s categorization is

unknown because the bug report has not received a response from the community at

the time of this writing. We have included the URLs of each report as hyperlinks in

the table so that the reader may check the reports for updates. The full data for the

341 crashes, with stack traces, as well as lists of the experimental configurations that

found each crash, are given in Appendix B.

Chapter 7. Evaluation 122

Community Feedback

At the time of this writing, we have received responses for 22 of the crashes, which

equates to 6 bug reports. Unfortunately, although we made the most reports in the

manticore repository, we have not received responses for any of them; the repository

page indicates that manticore is in "maintenance mode," so its community is presum-

ably not very active. We have had reports accepted as legitimate by the community

in two of the five repositories, mypy and mindsdb. Listing 7.1 shows a stacktrace of

one of the accepted mypy bugs that for which we were able to find a proof-of-concept

reproduction from the top-level. This bug manifests when mypy is attempting to an-

alyze a source file that contains a division expression between two integers. It has

constant folding logic built in to attempt to resolve these expressions, presumably to

aid in type analysis. When this constant folding logic tries to divide an extremely large

integer (integers are arbitrary precision in Python) by a small integer, it cannot fit the

result into a float (which is usually a machine double-precision floating point number,

not arbitrary precision), and mypy crashes with an unhandled exception, resulting in a

bad user experience. The fix that the community has suggested is to gracefully handle

these exceptions and print a more meaningful error message.

Traceback (most r e c e n t c a l l l a s t) :
F i l e " . . . / fuzzer/a t h e r i s _ r u n . py " , l i n e 137 , in harness

r e t v a l = fn (* args , * s t a r _a rg s , * * kwargs_copy , * * double_star_kwargs)
F i l e " . . . / repos/mypy/mypy/c o n s t a n t _ f o l d . py " , l i n e 123 , in cons tant_ fo ld_b inary_ in t_op

return l e f t / r i g h t
OverflowError : i n t e g e r d i v i s i o n r e s u l t too l a r g e for a f l o a t

LISTING 7.1: mypy OverflowError in constant folding logic

Listing 7.2 shows an excerpt of the pull request we submitted to mypy to fix the

return type mismatch that we detected in mypy.stubtest.parse_options. This pull

request was accepted and merged, and is now part of mypy’s codebase.

Chapter 7. Evaluation 123

@@ −1878 ,8 +1878 ,8 @@ c l a s s _Arguments :
a l l o w l i s t : l i s t [s t r]
g e n e r a t e _ a l l o w l i s t : bool
ignore_unused_al lowl is t : bool

− mypy_config_f i le : s t r
− custom_typeshed_dir : s t r
+ mypy_config_f i le : s t r | None
+ custom_typeshed_dir : s t r | None

check_typeshed : bool
vers ion : s t r

LISTING 7.2: Diff of pull request submitted to fix detected type error in

mypy

Listing 7.3 shows the traceback of the crash detected in mindsdb that was accepted.

The fix, which was to ensure that the value of the num_packets variable is an integer

rather than a float, was generated by a member of the community.

Traceback (most r e c e n t c a l l l a s t) :
. . .
F i l e " . . . / data/repos/mindsdb/mindsdb/api/mysql/mysql_proxy/data_types/mysql_packet . py " , l i n e 163 , in t e s t

ppr int . ppr int (Packet . bodyStringToPackets (" abdds ") [0] . g e t _ p a c k e t _ s t r i n g ())
F i l e " . . . / data/repos/mindsdb/mindsdb/api/mysql/mysql_proxy/data_types/mysql_packet . py " ,

l i n e 148 , in bodyStringToPackets
for i in range (num_packets) :

TypeError : ' f l o a t ' object cannot be i n t e r p r e t e d as an i n t e g e r

LISTING 7.3: Diff of pull request submitted to fix detected type error in

mypy

These accepted reports are a promising indicator that this tool is capable of finding

meaningful issues in Python code. On the other hand, other responses have been crit-

ical of whether the crashes that were detected indicate legitimate bugs. Jelle Zijlstra,

a key contributor to both mypy and black, and to the Python interpreter itself, wrote

the following in response to a report of OverflowErrors and MemoryErrors when using

Python’s string multiplication functionality:

Just to expand on this (in case it’s helpful for your research project): Your
post reads as if you assume it is a problem if a Python function can raise
an exception. That’s not how Python is generally written; almost every
operation can raise an exception, and robust code handles exceptions that
can reasonably be expected to appear (say, an HTTPError when making
an HTTP request), but not everything that could possibly happen. Every
memory allocation could raise MemoryError and every function call could
raise RecursionError; nobody is going to catch those.

Chapter 7. Evaluation 124

In this case, the functions you flagged use string multiplication for cre-
ating an indentation string. Obviously, that’s only expected to indent by
a relatively small number of spaces in normal operation. We could add
an explicit check if n > some_big_number: raise ValueError to catch
a possible bug where someone passes a huge number, but that wouldn’t
really make for a more useful error than the OverflowError you’ll get now.

- @JelleZijlstra on GitHub

This is useful context to understand how Python programmers think of exceptions.

When reporting a bug, two of the fields that are often required to be filled out are

"expected behavior" and "actual behavior." In this situation, as Jelle pointed out, the

expected behavior is not altogether different from the actual behavior: the functions-

under-test received input that caused an invalid memory allocation or integer over-

flow, and the language reported this in a graceful way by throwing an exception that

can be handled from within the language. In some safety critical settings, there may

be a requirement that the software cannot crash unexpectedly. In these situations, ex-

ceptions which are not explicitly accounted for and caught would become more of an

issue, but in the context of type-checking software, where typical inputs to the pro-

gram are within some reasonable input space, this is not a problem.

A similar response was received from another community member on a bug report

in black related to a MemoryError:

I’m not familiar with the ipynb format, but I assume the code is the string
in source, the (((...(((t)))...))). If so, then it makes sense that it would
fail, since that is causing a bunch of expressions, though you probably have
a low memory allocation to whatever is running black. The playground
formats that many just fine, and copy pasting more eventually gives a too
many parenthesis for safe mode error.

If someone did encounter this in actual code, I’d recommend allocating
more memory, splitting the expression up, or skipping that line with # fmt:
skip / off and on.

Chapter 7. Evaluation 125

I can’t speak for all of black’s dev team, I just lurk in the issues, but that
many nested parenthesis looks to me like enough of an edge case that re-
ducing the memory used isn’t a pressing concern, given that it requires
both an obscene amount and low memory availability.

- @MeGaGiGaGon on GitHub

The root cause of the crash here is actually a stack overflow in the Python parser,

caused by many nested parentheses. In normal idiomatic Python code, this many

nested parentheses would be extremely rare to find, and probably difficult to pass

through code review, although a malicious actor could in theory cause unexpected

crashes of, say, a continuous integration pipeline by inserting such code. In any case,

given the context, it seems reasonable that the community would respond in this way.

It is worth pointing out that we are not the only ones to have encountered such

responses to bugs found in fuzzing from the community. Some of the bugs reported as

part of PyRTFuzz [72] were also closed as illegitimate issues. A particularly interesting

discussion can be found in RecursionError in pyclbr.readmodule_ex [105]. The reported

crash is a recursion error when a library function that attempts to import a package

receives an extremely long import path, but the feedback from the community was

clear: although it is possible that such a crash could be exploited by attackers to induce

an application crash, it is not the responsibility of the Python interpreter to guard all

application code against attacks. Furthermore, one of the commenters introduced the

notion of the RecursionError in this case being "implementation-specific." That is, there

is a difference between properties of the language specification and properties of the

language implementation, and each can have different categories of exceptions that

it raises. The last comment on the post succinctly summarizes the perspective of the

community in their response to this crash report:

You can also solve this "issue" by increasing the recursion limit (if you really
want to).

I agree that this seems to work as expected. Garbage in - nice error out.

Chapter 7. Evaluation 126

- @sobolevn on GitHub

We do not construe these responses as negative, but rather as a logical and prac-

tical interpretation of what issues really matter to the average Python programmer.

This is, of course, far from a settled debate–allowing unhandled exceptions to propa-

gate can lead to denial-of-service, and potentially more severe security vulnerabilities

and information leakage. There is certainly a case to be made for more defensive pro-

gramming and better documentation of what errors can be thrown in Python so that

programmers do not unintentionally expose themselves to these issues.

Furthermore, in light of the community feedback, we hope to improve the useful-

ness of the feedback our tool provides in future work by 1) using control flow analysis

to understand automatically how crashes can be reproduced from top-level APIs, 2)

exploring the use of generative AI, or other more intelligent heuristics, to automat-

ically filter out exceptions that are unlikely to differ from expected behavior of the

code, or are handled at a higher level and 3) using generative AI to propose fixes, such

as inserting proper exception handling code when it is missing.

Generative AI Case Study

As just mentioned, we are motivated in future work to explore, among other avenues,

the use of generative AI to triage crashes and propose fixes for them. There is prece-

dent for using generative AI for automated bug triage and remediation in the literature

as well: Sergeyuk et al. [114] study the ways developers are interacting with coding

"copilot" tools. They found that 43.7% of respondents use generative AI assistants for

determining potential causes of bugs, and 42.4% report using generative AI assistants

for generating code for potential bug fixes. However, some respondents expressed

concern about the fact that effective bug triaging requires a lot of context. As context

windows for large language models become larger [31], and new techniques for more

Chapter 7. Evaluation 127

efficiently utilizing context emerge [100], these models continue to become more viable

for large-context tasks such as bug triaging, where entire codebases could potentially

be provided as context.

We performed a small case study to gain some intuition around how promising

augmenting TYPE HINT FUZZING with generative AI might be. Using the first neg-

ative report in the mypy repository given previously, where Jelle Zijlstra provided an

explanation, we prompted GPT-4o [90], OpenAI’s latest flagship model at the time of

this writing, giving it the following prompts (paraphrased) in the same conversation:

• P1: given the bug report that was originally written, and the source code of the

function in which the exception occurred, explain the problem, why it warrants

a fix, and propose a solution

• P2: Make your strongest argument to the mypy maintainers for why this issue is

worth considering and fixing

• P3: Respond as the mypy maintainers, making your strongest argument for why

the issue is not worth considering and fixing

• P4: Evaluate which argument is stronger and make a recommendation

The response to P1 is given in Figure 7.22. The issue analysis is largely correct. The

causes of the exceptions are correctly identified, and the impacts are mostly correct,

except for the subtle detail that the MemoryError is handled by the language runtime

such that an out-of-memory condition is not triggered. However, the fact that such

a large allocation is even attempted to be made poses significant risk if the imple-

mentations of the language interpreter or runtime libraries are not disciplined in their

memory management. The reasoning of why this issue warrants a fix also aligns with

security best practices by implying vulnerability to denial-of-service and suggesting

better input validation (for "edge cases"). GPT-4o also ties this back to the end user,

Chapter 7. Evaluation 128

which maintainers are likely to care about, by highlighting that uncaught exceptions

harm the user experience.

In the response to P1, GPT-4o also proposes fixes to the issue. The first proposal,

given in Figure 7.23, is to remedy the issue with input validation–note the validation

step and raise ValueError statement. The second proposal, given in Figure 7.24, is to

use "graceful degradation," where the input is validated and constrained to a reason-

able limit. If a constraint action takes place, a warning is emitted to the logs. These are

both reasonable solutions, each taking up few lines of code, and they effectively solve

the problem.

The ability of GPT-4o to generate reasonable and correct fixes for this problem

shows promise in generative AI’s ability to understand and fix issues (this is a sim-

ple example, however). After observing this response, we prompted GPT-4o with P2,

to have it argue in favor of fixing this issue. Figures 7.25 and 7.26 contain the argu-

ment. We find the four pillars of the argument, future proofing, defensive programming,

encouraging best practices, and minimal cost for long-term benefits quite compelling. The

overarching theme of strong input validation and defensive programming align well

with cybersecurity best practices, such as those enumerated in OWASP’s Top Ten [94].

We then prompted GPT-4o, in the same chat window, with P3, to have it argue the

other side, in favor of not fixing the issue. Figures 7.27 and 7.28 contain this response.

This argument is less compelling to us, especially given how trivial the fix for this issue

is (2-4 lines of code). However, taking the point of view of a maintainer who is dealing

with large amounts of bugs and feature requests every day, the case to ignore small

trivialities like this example, in aggregate, may be beneficial to the product as a whole,

as more time is devoted to key objectives that move the project along its roadmap.

Finally, we asked GPT-4o to decide which side of the argument it thought to be

Chapter 7. Evaluation 129

more compelling. Figure 7.29 contains GPT-4o’s determination. In this instance, GPT-

4o took the side of the maintainers, in accordance with what the true response was

from mypy’s maintainer, Jelle Zijlstra.

This case study indicates that GPT-4o can correctly identify and fix issues in code

with relevant and justifiable solutions when provided sufficient context about the

symptoms of the problem. It also displays strong argumentation skills, and it can

even come to its own conclusions as to which argument is more compelling. In this

case, if we had hooked GPT-4o into the crash analysis pipeline, this crash would’ve

been filtered out, in agreement with the mypy maintainers. Of course, more rigorous

study is needed; results for other crashes may not be so promising, and LLM perfor-

mance can vary from run to run. We also did not use the context window to its fullest

extent–we only provided the function in which the exception occurred for codebase-

level context. However, this case study does suggest that there is great potential in this

approach, and further motivates future work in this area.

Other Observations

Although we detected 341 crashes, only a small subset of them had potential to be

semantic bugs, and were reported. 151 of the 341 crashes, nearly half, fall into the

broad category of "Type Annotation Enhancement Opportunity" (abbreviated as AE,

see Table 7.1). Recall that when the tool detects an "Any" type annotation (this can

either be an explicit annotation, or what the type extraction defaults to when there

is no type annotation), it attempts to exercise it by passing in inputs across a variety

of types. "Type Annotation Enhancement Opportunity" crashes therefore are crashes

caused by the function implicitly expecting a type that is more specific than "Any."

See Appendix B for the full data sheet of these, and other, crashes. As we will discuss

Chapter 7. Evaluation 130

more in Chapter 8, we would like to explore using the information from these crashes

to offer type annotation suggestions to users of the tool in future work.

Traceback (most r e c e n t c a l l l a s t) :
F i l e " . . . / fuzzer/a t h e r i s _ r u n . py " , l i n e 137 , in harness

r e t v a l = fn (* args , * s ta r _a rg s , * * kwargs_copy , * * double_star_kwargs)
F i l e " . . . / repos/mypy/mypy/messages . py " , l i n e 2997 , in f o r m a t _ s t r i n g _ l i s t

a s s e r t l s t
Asser t ionError

LISTING 7.4: Violation of assertion to enforce that a list is non-empty in

mypy

Another 32 of the crashes were AssertionErrors. In our analysis, we observed

a practice across Python repositories where assert statements (which produce these

errors upon violation) are used to enforce additional type constraints that cannot be

expressed through the standard system of type hints. Listing 7.4 shows an example of

this practice in mypy, and Listing 7.5 shows an example in black.

Traceback (most r e c e n t c a l l l a s t) :
F i l e " . . . / fuzzer/a t h e r i s _ r u n . py " , l i n e 137 , in harness

r e t v a l = fn (* args , * s ta r _a rg s , * * kwargs_copy , * * double_star_kwargs)
F i l e " . . . / repos/black/ s r c /black/handle_ipynb_magics . py " , l i n e 171 , in

get_token
a s s e r t magic

Asser t ionError

LISTING 7.5: Violation of assertion to enforce that a string is non-empty

in black

This practice, which is commonplace, suggests that the existing system of type

hints is insufficient for all types that Python programmers want to express. We offer

ideas for expansion of the type annotation system in Chapter 8.

Chapter 7. Evaluation 131

Finding 8 The tool indeed is capable of finding bugs that developers care about, as

shown by the 3 reports that were accepted, of which 2 have had fixes implemented.

There is still work to be done on filtering out noise in crash reports, and utilizing

the information from crashes which are not caused by semantic bugs to improve the

type annotations of the code-under-test.

Chapter 7. Evaluation 132

Repository Exception Type EX FO EE ER LB AE TE Report Link

mypy OverflowError X https://github.com/python/mypy/issues/17454

mypy MemoryError X https://github.com/python/mypy/issues/17454

mypy OverflowError X https://github.com/python/mypy/issues/17454

mypy MemoryError X https://github.com/python/mypy/issues/17454

mypy MemoryError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy OverflowError X X https://github.com/python/mypy/issues/17008

mypy N/A X X https://github.com/python/mypy/pull/16897

mindsdb TypeError X https://github.com/mindsdb/mindsdb/issues/9426

mindsdb OverflowError X https://github.com/mindsdb/mindsdb/issues/9467

black MemoryError X X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

black MemoryError X https://github.com/psf/black/issues/4400

manticore TypeError https://github.com/trailofbits/manticore/issues/2660

manticore OverflowError https://github.com/trailofbits/manticore/issues/2660

manticore ValueError https://github.com/trailofbits/manticore/issues/2660

manticore MemoryError https://github.com/trailofbits/manticore/issues/2660

manticore ValueError https://github.com/trailofbits/manticore/issues/2651

manticore OverflowError https://github.com/trailofbits/manticore/issues/2651

manticore MemoryError https://github.com/trailofbits/manticore/issues/2651

manticore RecursionError https://github.com/trailofbits/manticore/issues/2652

manticore ValueError https://github.com/trailofbits/manticore/issues/2653

manticore OverflowError https://github.com/trailofbits/manticore/issues/2653

manticore MemoryError https://github.com/trailofbits/manticore/issues/2653

manticore ValueError https://github.com/trailofbits/manticore/issues/2654

manticore RecursionError https://github.com/trailofbits/manticore/issues/2652

manticore ValueError https://github.com/trailofbits/manticore/issues/2655

manticore ZeroDivisionError https://github.com/trailofbits/manticore/issues/2656

manticore ValueError https://github.com/trailofbits/manticore/issues/2654

manticore MemoryError https://github.com/trailofbits/manticore/issues/2657

manticore OverflowError https://github.com/trailofbits/manticore/issues/2657

manticore MemoryError https://github.com/trailofbits/manticore/issues/2658

manticore TypeError https://github.com/trailofbits/manticore/issues/2659

manticore OverflowError https://github.com/trailofbits/manticore/issues/2658

manticore MemoryError https://github.com/trailofbits/manticore/issues/2658

manticore OverflowError https://github.com/trailofbits/manticore/issues/2658

TABLE 7.12: Exception Data with Report Links

https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/pull/16897
https://github.com/mindsdb/mindsdb/issues/9426
https://github.com/mindsdb/mindsdb/issues/9467
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2651
https://github.com/trailofbits/manticore/issues/2651
https://github.com/trailofbits/manticore/issues/2651
https://github.com/trailofbits/manticore/issues/2652
https://github.com/trailofbits/manticore/issues/2653
https://github.com/trailofbits/manticore/issues/2653
https://github.com/trailofbits/manticore/issues/2653
https://github.com/trailofbits/manticore/issues/2654
https://github.com/trailofbits/manticore/issues/2652
https://github.com/trailofbits/manticore/issues/2655
https://github.com/trailofbits/manticore/issues/2656
https://github.com/trailofbits/manticore/issues/2654
https://github.com/trailofbits/manticore/issues/2657
https://github.com/trailofbits/manticore/issues/2657
https://github.com/trailofbits/manticore/issues/2658
https://github.com/trailofbits/manticore/issues/2659
https://github.com/trailofbits/manticore/issues/2658
https://github.com/trailofbits/manticore/issues/2658
https://github.com/trailofbits/manticore/issues/2658

Chapter 7. Evaluation 133

FIGURE 7.22: Excerpt of GPT-4o conversation: Issue Identification

Chapter 7. Evaluation 134

FIGURE 7.23: Excerpt of GPT-4o conversation: First Proposed Fix

Chapter 7. Evaluation 135

FIGURE 7.24: Excerpt of GPT-4o conversation: Second Proposed Fix

Chapter 7. Evaluation 136

FIGURE 7.25: Excerpt of GPT-4o conversation: Pro-Fix Argument

Chapter 7. Evaluation 137

FIGURE 7.26: Excerpt of GPT-4o conversation: Pro-Fix Argument, contin-
ued

Chapter 7. Evaluation 138

FIGURE 7.27: Excerpt of GPT-4o conversation: Anti-Fix Argument

Chapter 7. Evaluation 139

FIGURE 7.28: Excerpt of GPT-4o conversation: Anti-Fix Argument, con-
tinued

Chapter 7. Evaluation 140

FIGURE 7.29: Excerpt of GPT-4o conversation: GPT’s Opinion

141

8 Discussion and Future Work

In this chapter, we discuss the results and conclusions that we draw from them and ad-

dress threats to validity. We also contribute proposals for enhancements to the Python

type annotation system based on our observations of how Python programmers make

up for deficiencies in the type system. Finally, we conclude with an overview of the

areas of future work that can be explored.

8.1 Discussion

Overall, our evaluation shows that the tool has promise as a useful complement to

static analysis and other software testing methodologies for Python, and also that

more work must be done.

In Section 7.3.1, we uncovered clear evidence that the custom encoding we de-

signed and implemented to support fuzzing is functional and effective at facilitating

fuzzing. We therefore recommend the exclusive use of this encoding in future use of

the tool. There are some ways the encoding could be improved, however, such as by

compressing the metadata section so that encoded strings take up less memory.

In Section 7.3.2, we examined and compared various configurations of the tool. Our

initial evaluation inspired us to perform an auxiliary evaluation on a single reposi-

tory to provide a better view into the effect of the acl2s_reachout_freq parameter

on code coverage and crash discovery. Our findings do not conclusively point to

any one configuration, but they suggest weakly that a corpus with |C| = 100 is the

Chapter 8. Discussion and Future Work 142

best overall of the corpus sizes we tested, and higher acl2s_reachout_freq reaches

the knee quickly with better coverage (according to CAK/TTK metrics), but lower

acl2s_reachout_freq is better for triggering crashes. This is rather counterintuitive,

as there is a correlation between code coverage and crashes triggered, although it may

be weak [70]. Furthermore, based on the data, paying attention only to the "first knee"

with CAK/TTK may be ignoring important parts of the story. Figure 7.15, for example,

exhibits multiple instances where the knee occurs early, but then the overall coverage

gained changes substantially later in the fuzzing campaign, and the ranking of con-

figurations based on Coverage At Knee may be different from the ranking based on

coverage at the end of the campaign. mypy_100_0.2 and mypy_acl2s exhibit this in the

right half of Figure 7.15.

All of this points to the need for longer timeouts, as encouraged by Klees et al. [70],

so that the state space can be more fully explored and a true knee can be reached in

the allotted time. Because of these flaws, we encourage interpretation of the results

for RQ2 with care–we have attempted to answer the research question in this context,

with the time and resources that were available, but unanswered questions remain.

Additionally, this iteration of the TYPE HINT FUZZING implementation has not been

extensively optimized, and differences in speed between independent trials and tool

configurations may lead to the actual abilities of each configuration not being repre-

sented. The short timeout per function candidate (440 seconds), small sample size for

independent trials (N = 5), inefficiencies in the use of time by various parts of the al-

gorithm, and other startup costs can all greatly affect performance metrics. Some ideas

for improvement in a future evaluation include 1) profiling the implementation to re-

move obvious inefficiencies, 2) implementing corpus minimization so that a large cor-

pus actually contains diverse inputs, 3) comparing across both timeout, and number of

runs, and 4) exploring other evaluation metrics, such average new coverage obtained per

Chapter 8. Discussion and Future Work 143

ACL2s input and average new coverage obtained per mutated input to understand the rel-

ative contribution of ACL2s inputs and mutated inputs to coverage obtained. Similar

metrics can be defined for crashes triggered.

In Section 7.3.3, we presented the results for RQ3: issues in code that were uncov-

ered by the tool during the evaluation of RQ2 and were categorized and reported. At

the time of this writing, we have obtained responses for six of them, with three pos-

itive and three negative. Two of the issues have been patched. Many of the issues

reported were in manticore, which is a repository without active maintenance. This

was an oversight when selecting repositories on which to evaluate that we will correct

in future work. According to our classification methodology, we found no reportable

bugs in django, which was the only repository not in the "regular" category of type

annotation practice for which we analyzed issues [28]. There were, however, a large

amount of exceptions related to "Any" type annotations in django (AE category; see

Section 7.2.3). This suggests that the tool may only be effective at finding legitimate

issues in code if it is well covered with type annotations. This motivates future work

in exploring integration with type inference tools, so that the tool can be effective with

even less manual effort. We also found that due to the nature of bottom-up fuzzing,

there is significant manual effort involved in identifying whether or not bugs actu-

ally would manifest at the top-level of a program in order to generate reproduction

steps that would be actionable for developers. Providing automation, or perhaps AI

augmentation, of this process is another exciting area of future work.

Another central theme from the results of RQ3 is the debate about what excep-

tions are worth handling in Python. The customer-focused software engineer and the

security analyst have differing views on this matter. In theory, any unhandled excep-

tion can be construed as a denial-of-service vulnerability. In C/C++, overflow errors

can potentially even be exploitable security vulnerabilies [29], although it is unclear

Chapter 8. Discussion and Future Work 144

whether this is possible in Python. Adding this level of defensiveness to code can be a

difficult case to make with code maintainers who are also balancing other competing

priorities, such as code readability and more prevalent semantic bugs that are affecting

real users. Ultimately, what is considered a bug heavily depends on the problem do-

main the software system is operating in and the maintainers’ preferences and coding

styles. The generative AI case study we performed provides early results that suggest

that AI augmentation could be effective for making these determinations on a case-by-

case basis; the conversation with GPT-4o [90] demonstrates that it has understanding

of the key arguments for and against fixing bugs and it can come up with reasonable

recommendations.

8.2 Threats To Validity

There are several threats to validity of the results presented herein that we would like

to acknowledge here.

8.2.1 Sample Sizes

In a departure from the recommendations of previous work [70, 59, 3], we use a rel-

atively small trial count (N = 5) for all experimental configurations in the results

presented. This is primarily due to resource and time constraints, and we hope to

improve on this limitation of our results in future work.

8.2.2 Timeouts

As noted in Klees et al. [70] and Herrera et al. [59], fuzzing performance can vary

wildly between trials, and between various settings for timeouts. Klees et al. [70]

recommend a timeout of at least 24 hours. Due to the time constraints under which

Chapter 8. Discussion and Future Work 145

we were operating, however, the minimum timeout with which we ran fuzzing cam-

paigns was 440 seconds. This is per function candidate though, so mypy, for instance,

received 440 ∗ 127 = 55, 880secs = 15.5hrs of fuzzing time in RQ2. The threat to va-

lidity of the results of RQ1 and RQ2 is that the relative performances of the configura-

tions may differ significantly when run for longer timeouts. For RQ3, the quantity and

quality of issues discovered may have been different under longer timeouts. This is a

deficiency in our evaluation we hope to correct in future work. However, we contend

that our evaluation of CAK/TTK remains valid and valuable, because by focusing on

knees, we control for time.

8.2.3 Algorithmic Inefficiencies

We have not extensively profiled the tool, and we also did not implement the fuzzing

best practice of corpus minimization due to time constraints [58]. It is therefore unclear

how much of the time budget is spent on startup costs, other non-fuzzing activity, or

redundant fuzzing activity related to an unminimized corpus. These are clear areas for

improvement, and they may compromise the validity of the results in RQ2, especially

given the use of short timeouts. We plan to improve on this in future work.

8.2.4 Repository Selection

Recall that we selected the original set of 15 repositories primarily by using the set

of "regular" type annotators in Di Grazia and Pradel [28], with two more repositories

added in because of popularity in the Python ecosystem. Selection in this way may

have introduced bias towards repositories on which our tool might perform better

than on a randomly selected open source Python repository. Importantly, however,

we acknowledge that, given that the tool depends on type annotations to function, we

Chapter 8. Discussion and Future Work 146

only expect these results to generalize to other repositories with similar density and

quality of type annotations.

8.2.5 Exception Deduplication

We knowingly depart from the guidance of Klees et al. [70] in using stack-based dedu-

plication in the analysis of the crashes produced by the tool. We do this because

ground truth is not readily available in our case, and accoding to Klees et al. [70],

it tends to be the better of the two methods they examined, in that it tends to over-

count less. Our choices for the maximum number of stack frames to compare, N = 3,

is arbitrary, and may have benefited from a sensitivity analysis to determine how the

choice of N would affect crash counts, and consequently, the results presented. We

would like to explore this further in future work.

8.2.6 Assumptions in Statistical Analysis

In Section 7.3.2, we note that we make the assumption that the sample of repositories

is representative of the general population, and therefore that results pooled across

repositories on a per-function candidate level can all be construed as independent and

identically distributed. This I.I.D. assumption also ignores any potential interactions

between functions in the codebase, where one function candidate might call another

function candidate that has been separately fuzzed, which is an interaction that we

have observed in the studied repositories. For the purposes of the analyses we per-

form, this is convenient, and it at least allows for relative comparison of the configura-

tions over the repositories and function candidates that were studied, but in practice,

these assumptions may not hold, and deserve more careful scrutiny in future work

(though, it is worth noting that there is always a risk that results based on sampling

will not generalize).

Chapter 8. Discussion and Future Work 147

8.2.7 Confidence Intervals

All of the confidence intervals were constructed with bootstrapping, which is a known

and acceptable method in statistics for estimating the distribution of a test statistic

with randomness [46, 3]. An example of this method in use can be seen in Herrera et

al. [59]. However, since these confidence intervals are randomly generated, different

pseudorandom states may result in different confidence intervals, leading to different

interpretations of significance of the results. This criticism of the bootstrap and others

are given in Gleser [42]. Nonetheless, this method proves useful in situations where

robustness against violations of underlying assumptions of statistical tests is needed,

and the distribution of the statistic is unknown. Constructing confidence intervals

with another method may yield different results, so all claims about statistical signifi-

cance should be interpreted with care. We encourage the reader to focus primarily on

the bugs found and reported as the primary measure of our tool’s effectiveness.

8.2.8 Custom Enumerators

The construction of the custom enumerators given in Chapter 3 was based on simple

heuristics. There may be opportunities for improvement based on previous work on

common input validation mistakes in Python code.

8.2.9 Manual Bug Analysis and Reporting

The manual bug analysis was conducted entirely by the author of this thesis, which

means that there may be bias or inaccuracies in that analysis. In future work, a review

process where each bug is reviewed by at least two independent individuals should

be used, following previous work [116, 104, 6].

Chapter 8. Discussion and Future Work 148

8.3 Type Hint Enhancement Proposals

Throughout this work, we observed various instances where the type annotations

specified in PEP-484 [108] seem to be deficient for Python developers’ needs. Recall,

for instance, Listing 2.4. Although a main advantage of the PEP-484 system is that

it is simple, it lacks the expressivity that Python developers clearly indicate that they

are demanding. The purpose of static analysis is defeated when runtime checks (i.e.

assert statements) need to be inserted in order to make up for the deficiencies of the

type system. We therefore propose the following enhancements to the Python type

hint system to allow for commonly required subtypes of common types. These may

or may not be feasible to implement in the current suite of tools–we offer them more

as food for thought.

8.3.1 Non-empty List

This is the requirement that was not met in Listing 2.4. We propose the addition of a

NonEmptyList type to the typing module which represents this type.

8.3.2 Natural Numbers/Non-negative Integers

In many instances, an integer value is being passed around, but certain integer values

do not make sense for that specific context. We propose the addition of a Natural

type to the typing module which represents the natural numbers (in the context of

computer science, this set includes 0).

Chapter 8. Discussion and Future Work 149

8.3.3 Generalization: Predicates

Given that the syntax of annotations in Python is actually unspecified in the grammar

[142], it is possible to arbitrarily extend the language of type hints. We therefore pro-

pose the addition of predicates as a way to add arbitrary constraints to types. These

would enable the previous proposals and much more, but this may be very challeng-

ing from an implementation standpoint. The set of predicates might have to be limited

to a small language at first, and integration with an automated theorem prover such as

ACL2s may be necessary. Interestingly, this is not a new idea in the Python ecosystem.

As an example, icontract [97] is a Python library that supports a "design-by-contract"

coding style, allowing users to specify arbitrary function contracts that will produce

descriptive and useful failure messages when violated. As for how these contracts

could be expressed in type annotations, we propose the syntax shown in Listing 8.1.

def myfunction(a: List[Integer[_ > 5]][len(_) > 0])

-> Integer[_ > 5]:

"""

sum all integers in the given nonempty list

containing integers only greater than 5

"""

return sum(a)

LISTING 8.1: StripMetadata definition in FuzzerMutate.h

The underscore character (’_’) in each predicate is a placeholder for any value of

the base type. In the example of myfunction given in the listing, it may not be trivial to

a static analysis tool that the output of this function will always be an integer greater

than five, provided that the input contract is satisfied. This is where theorem provers

or SMT solvers may be able to help. A simple sublanguage that would cover the

common use cases elucidated here would simply be the len function to represent the

sizes of collections, and the equality and inequality comparison operators (==, !=, <, >,

etc.). There is already official language support for arbitrary annotations which extend

Chapter 8. Discussion and Future Work 150

the PEP-484 type system as well [132], so perhaps this system could be built on top of

what is already existent in the language.

8.4 Future Work

This thesis represents the first foray into a broad area of potential research. With this

tool, we have pioneered the ability to apply fuzzing to Python code that is type anno-

tated in an automated way. However, there are many areas we would like to improve

the tool both in terms of core functionality, and in terms of future work, we would like

to distinguish between short-term directions and long-term directions.

8.4.1 Short-term Directions

Basic enhancements to the feature set of the currently implemented tool include:

• Check input contracts for functions candidates that are being called during the

fuzzing of another function candidate

• Expand set of supported types to include more types in Python’s typing module,

and improve support for arbitrary user-defined classes

• Reduce the space footprint of the custom encoding’s encoded strings

• Implement corpus minimization, which is fuzzing best practice [58]

• Correct import and dependency resolution errors during repository setup to en-

able the extraction of more function candidates

• Improve fuzzing process isolation, perhaps by using Docker or a similar technol-

ogy

• Add more representative integers to the custom enumerator for integers

Chapter 8. Discussion and Future Work 151

We would also like to strengthen the evaluation of the tool in the following ways:

• Evaluate a more comprehensive set of tool configurations for RQ2, after opti-

mizations have been made to the implementation

• Run a trial of the tool on the codebase of a software company in industry, to

assess real-world performance and economic value

8.4.2 Long-term Directions

Some long-term directions we envision for this work include:

• AI-enabled explanations of issues found in code

• "Type repair:" suggesting more general or more specific type annotations based

on fuzzing results

• Integration with other static analysis methods, such as control-flow analysis and

type inference

152

9 Conclusion

In this thesis, we proposed, designed, and implemented TYPE HINT FUZZING, a novel

approach to testing Python code in a dynamic way. We intend for this approach to

complement existing Python code analysis offerings, such as static type checkers, and

we have aimed to make the design modular and extensible to enable future develop-

ment of this tool. We have validated the construction of our custom encoding (Section

7.3.1), explored various configurations of the tool (Section 7.3.2), and analyzed the

tool’s findings (Section 7.3.3). Reporting the findings of the tool has turned out to

be successful, especially in inviting the community into a productive and insightful

conversation with this work.

Frankly, despite this treatment exceeding one hundred pages in length, it has barely

scratched the surface of what this approach is capable of. From expanding the amount

of type checking the tool is doing during fuzzing, to adding more intelligence when

filtering out crash reports, to expanding the tool’s capabilities as a property-based

testing engine, there are so many more avenues for evaluation, implementation, and

feature additions that we could not fit in this thesis due to constraints of time and

resources. We hope academia and industry both agree with this sentiment, and we are

excited to see what comes of this work.

153

A Tool Configuration Reference

Here is the full reference for configuration options of the tool, at the time of this writ-
ing.

• acl2s_reachout_frequency: When backend is set to atheris, this controls the
frequency at which a new input from ACL2s will be pulled during the fuzzing
campaign, instead of using a mutated seed input from Atheris. 0.7, for example,
means that 70% of fuzzing iterations will pull a fresh example from ACL2s.

• backend: This is the fuzzing backend to use. Can be either acl2s or atheris. The
acl2s backend represents ACL2s-only fuzzing, with no coverage-guided muta-
tion. atheris represents fuzzing with Atheris. More backends may be added in
the future. corpus_amendment_timeout_multiple: The number of seconds each
corpus element is allotted when it is passed into the FUT during corpus amend-
ment, before the execution is interrupted. This is to prevent infinite loops or
other slow execution from halting fuzzing progress indefinitely.

• corpus_size: The size of the corpus. This is applicable when backend is set to
atheris.

• encoding: The encoding to use, either "custom_v2" or "pickle".

• excluded_functions: The list of patterns to exclude when collecting the list of
functions to fuzz. Currently, this setting does not support wildcard characters or
regex-like syntax.

• fuzzing_unit_max_len: The maximum length, in bytes, of the fuzzing input
buffer in Atheris/libFuzzer.

• included_functions: The list of patterns to select when collecting the list of func-
tions to fuzz. When this is set, the function name is first tested to check if it con-
tains at least one pattern from included_functions, then excluded_functions is
applied as described in its entry.

• metadata_only: If set to True, scrambles the data portion of all seed inputs with
random bytes, to remove the influence of primitive type information.

• memory_limit_mb: The memory limit, in megabytes.

• random_seed: The random seed of the fuzzing campaign.

Appendix A. Tool Configuration Reference 154

• should_top_off_corpus: When this is set to true, the corpus is "topped off" to its
originally specified size (in corpus_size) after elements are filtered out during
corpus amendment. This supercedes should_top_off_corpus_at_empty.

• should_top_off_corpus_at_empty: When this is set to true, when the corpus
becomes empty during corpus amendment, exactly one element is added to the
corpus to make it non-empty.

• style: Controls the "style" of the fuzzing run: whether it is limited by time, or
by number of iterations. Takes two values, TIMEOUT and RUN_LIMIT.

• timeout: Timeout, in seconds, for each function in the fuzzing campaign.

155

B Full Crash Data

Definitions of the two-letter category abbreviations are given in Table 7.1. Excep-
tion sites are given in the form ExceptionType@path/to/file:LineNo. Exception sites
whose paths are prefixed with <python_internal> occur within the Python standard
library. Other exception sites are given relative to the root of the repository in which
they occur.

A
ppendix

B.
FullC

rash
D

ata
156

TABLE B.1: Comprehensive Exception Data

Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mypy OverflowError@mypy/mypy/

util.py:527
X https://github.com/python/mypy/issues/17454 mypy_1_0.1, mypy_acl2s, mypy_100_0,

mypy_10000_0, mypy_1_0.2, mypy_100_0.1,
mypy_100_0.2, mypy_1_0

mypy MemoryError@mypy/mypy/u
til.py:527

X https://github.com/python/mypy/issues/17454 mypy_1_0.1, mypy_acl2s, mypy_100_0,
mypy_10000_0, mypy_1_0.2, mypy_100_0.1,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy OverflowError@mypy/mypy/s
trconv.py:639

X https://github.com/python/mypy/issues/17454 mypy_1_0.1, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2, mypy_1_0

mypy MemoryError@mypy/mypy/st
rconv.py:639

X https://github.com/python/mypy/issues/17454 mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_10000_0.2, mypy_10000_0.1, mypy_1_0

mypy AssertionError@mypy/mypy/
modulefinder.py:850

X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy UnicodeDecodeError@mypy/
mypy/util.py:168

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy KeyError@mypy/mypy/stubin
fo.py:13

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy ValueError@mypy/mypy/insp
ections.py:622

X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2, mypy_1_0

mypy OverflowError@mypy/mypy/
dmypy_os.py:31

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy KeyError@mypy/mypy/report
.py:128

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy ValueError@mypy/mypy/fsca
che.py:71

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy ValueError@mypy/mypy/fsca
che.py:71

X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2, mypy_1_0

mypy ValueError@mypy/mypy/fsca
che.py:71

X mypy_1_0

mypy KeyError@mypy/mypy/config
_parser.py:389

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy OverflowError@mypy/mypy/
util.py:427

X mypy_1_0.1, mypy_1_0

mypy OverflowError@mypy/mypy/
util.py:844

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_10000_0.2, mypy_1_0, mypy_10000_0.1

mypy KeyError@mypy/mypy/typea
nal.py:173

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy ValueError@mypy/mypy/mod
ulefinder.py:867

X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

Continued on next page

https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454
https://github.com/python/mypy/issues/17454

A
ppendix

B.
FullC

rash
D

ata
157

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mypy ValueError@mypy/mypy/mod

ulefinder.py:868
X X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,

mypy_100_0.1, mypy_100_0.2, mypy_1_0
mypy AssertionError@mypy/mypy/s

erver/target.py:5
X mypy_1_0.1, mypy_10000_0, mypy_100_0,

mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy UnicodeDecodeError@mypy/
mypy/util.py:547

X X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2, mypy_1_0

mypy TypeError@mypy/mypy/stubt
est.py:76

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy ValueError@unknown X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_1_0,
mypy_10000_0.1

mypy OverflowError@mypy/mypy/r
eport.py:581

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_10000_0.2, mypy_1_0, mypy_10000_0.1

mypy AssertionError@mypy/mypy/
messages.py:2997

X mypy_10000_0, mypy_100_0, mypy_acl2s,
mypy_100_0.1, mypy_100_0.2, mypy_10000_0.2,
mypy_10000_0.1

mypy ValueError@mypy/mypy/fsca
che.py:172

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1,
mypy_1_0

mypy TypeError@<python_internal>
/lib/python3.8/re.py:210

mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1

mypy ValueError@mypy/mypy/insp
ections.py:626

X mypy_1_0.1, mypy_acl2s, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_1_0

mypy ValueError@mypy/mypy/mes
sages.py:3040

X X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_1_0.2, mypy_100_0.1, mypy_100_0.2,
mypy_10000_0.2, mypy_10000_0.1

mypy ValueError@mypy/mypy/mes
sages.py:3034

X X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_1_0.2, mypy_100_0.1, mypy_100_0.2,
mypy_10000_0.2, mypy_10000_0.1, mypy_1_0

mypy ZeroDivisionError@mypy/myp
y/messages.py:3070

X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1

mypy AssertionError@mypy/mypy/c
onstant_fold.py:151

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1,
mypy_1_0

mypy AssertionError@mypy/mypy/
modulefinder.py:850

X X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:123

X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_10000_0.2, mypy_10000_0.1, mypy_1_0

mypy ValueError@<python_internal>
/lib/python3.8/posixpath.py:2
59

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1,
mypy_1_0

mypy IndexError@mypy/mypy/serv
er/target.py:5

X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
158

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mypy IndexError@mypy/mypy/serv

er/target.py:9
X mypy_1_0.1, mypy_10000_0, mypy_100_0,

mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1,
mypy_1_0

mypy error@mypy/mypy/util.py:548 X X X mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_acl2s, mypy_100_0.1, mypy_1_0.2,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1,
mypy_1_0

mypy ValueError@mypy/mypy/util.
py:548

X mypy_1_0.1, mypy_acl2s, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_1_0

mypy ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:257

X X X mypy_10000_0, mypy_100_0, mypy_100_0.1,
mypy_100_0.2, mypy_10000_0.2, mypy_10000_0.1

mypy PermissionError@mypy/mypy
/fscache.py:172

X X X mypy_1_0.1, mypy_10000_0, mypy_acl2s,
mypy_1_0.2, mypy_10000_0.2, mypy_10000_0.1

mypy MemoryError@mypy/mypy/c
onstant_fold.py:138

X X https://github.com/python/mypy/issues/17008 mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_10000_0.2,
mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:138

X X https://github.com/python/mypy/issues/17008 mypy_1_0.1, mypy_10000_0, mypy_100_0,
mypy_100_0.1, mypy_1_0.2, mypy_100_0.2,
mypy_10000_0.1, mypy_1_0

mypy ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:424

X X X mypy_10000_0, mypy_100_0, mypy_100_0.1,
mypy_10000_0.2, mypy_10000_0.1

mypy ValueError@mypy/mypy/buil
d.py:537

X mypy_1_0.1, mypy_acl2s, mypy_100_0, mypy_1_0.2,
mypy_100_0.1, mypy_100_0.2

mypy OverflowError@mypy/mypy/c
onstant_fold.py:153

X X https://github.com/python/mypy/issues/17008 mypy_1_0.1, mypy_100_0, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:163

X X https://github.com/python/mypy/issues/17008 mypy_100_0, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:160

X X https://github.com/python/mypy/issues/17008 mypy_100_0, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:155

X X https://github.com/python/mypy/issues/17008 mypy_100_0, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:157

X X https://github.com/python/mypy/issues/17008 mypy_100_0, mypy_1_0

mypy OverflowError@mypy/mypy/c
onstant_fold.py:166

X X https://github.com/python/mypy/issues/17008 mypy_100_0, mypy_1_0

mypy ValueError@<python_internal>
/lib/python3.8/posixpath.py:2
59

X mypy_1_0.1, mypy_acl2s, mypy_1_0.2,
mypy_100_0.2, mypy_1_0

mypy ValueError@unknown X mypy_1_0.1, mypy_acl2s, mypy_1_0.2,
mypy_100_0.2, mypy_1_0

mypy ValueError@<python_internal>
/lib/python3.8/posixpath.py:2
59

X mypy_10000_0, mypy_100_0, mypy_100_0.1,
mypy_10000_0.2, mypy_10000_0.1

mypy ValueError@unknown X mypy_10000_0, mypy_100_0, mypy_100_0.1,
mypy_10000_0.2, mypy_10000_0.1

mypy TypeError@<python_internal>
/lib/python3.8/re.py:210

mypy_10000_0, mypy_10000_0.1, mypy_10000_0.2,
mypy_100_0.1

mypy ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:424

X X X mypy_10000_0, mypy_10000_0.1

mypy ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:257

X X X mypy_10000_0, mypy_10000_0.2

mypy TypeError@<python_internal>
/lib/python3.8/re.py:210

mypy_1_0.1, mypy_acl2s, mypy_100_0.2,
mypy_1_0.2

Continued on next page

https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008
https://github.com/python/mypy/issues/17008

A
ppendix

B.
FullC

rash
D

ata
159

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb ValueError@mindsdb/mindsdb

/interfaces/storage/fs.py:108
X mindsdb_10000_0.2, mindsdb_10000_0.1,

mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/api/http/utils.py:36

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/surreal
db_handler/utils/surreal_get_i
nfo.py:10

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb ValueError@mindsdb/mindsdb
/integrations/utilities/sql_utils
.py:115

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/utilities/sql_utils
.py:115

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/byom_
handler/proc_wrapper.py:77

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_1_0, mindsdb_1_0.1, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/api/mysql/mysql_proxy/dat
a_types/mysql_packet.py:148

X https://github.com/mindsdb/mindsdb/issues/9426 mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/interfaces/database/proje
cts.py:299

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/lightda
sh_handler/lightdash_tables.py
:20

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/api/executor/datahub/da
tanodes/information_schema_
datanode.py:346

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:19

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb PermissionError@checksumdir
/checksumdir/__init__.py:89

X X mindsdb_1_0.2, mindsdb_1_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/eventst
oredb_handler/utils/helpers.p
y:35

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/lightda
sh_handler/lightdash_tables.py
:15

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/eve
ntbrite_handler/eventbrite_tabl
es.py:14

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/utilities/hooks/profiling.py:1
8

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

Continued on next page

https://github.com/mindsdb/mindsdb/issues/9426

A
ppendix

B.
FullC

rash
D

ata
160

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb AttributeError@mindsdb/mind

sdb/integrations/handlers/we
b_handler/urlcrawl_helpers.py
:163

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/mo
netdb_handler/utils/monet_ge
t_id.py:5

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb LocationParseError@<string>:3 X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:210

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/migrations/migrate.py:29

X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/utilities/sql_
utils.py:66

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/utilities/ps.py:54

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:231

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/utilities/security.py:17

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_1_0, mindsdb_1_0.1

mindsdb UnicodeError@mindsdb/minds
db/utilities/security.py:17

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb gaierror@mindsdb/mindsdb/u
tilities/security.py:17

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/mo
netdb_handler/utils/monet_ge
t_id.py:5

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/pathlib.py:667

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb KeyError@mindsdb/mindsdb/
utilities/profiler/profiler.py:19

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
161

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb AttributeError@mindsdb/mind

sdb/api/mysql/mysql_proxy/
classes/com_operators.py:20

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/eventst
oredb_handler/utils/helpers.p
y:45

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/sur
realdb_handler/utils/surreal_g
et_info.py:3

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/utilities/config.py:21

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/utilities/ml_task_queue/u
tils.py:50

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb OverflowError@mindsdb/min
dsdb/utilities/ml_task_queue/
utils.py:47

https://github.com/mindsdb/mindsdb/issues/9467 mindsdb_100_0, mindsdb_100_0.1, mindsdb_100_0.2,
mindsdb_1_0, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb AttributeError@mindsdb/mind
sdb/integrations/libs/handler_
helpers.py:25

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@<python_intern
al>/lib/python3.8/urllib/parse
.py:119

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/lightda
sh_handler/lightdash_tables.py
:32

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb KeyError@mindsdb/mindsdb/
integrations/handlers/rocket_c
hat_handler/rocket_chat_tables
.py:11

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/libs/llm_utils
.py:161

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/eventst
oredb_handler/utils/helpers.p
y:31

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/interfaces/storage/json.py
:53

mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/site-packages/
requests/models.py:173

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb ValueError@<python_internal>
/lib/python3.8/site-packages/
requests/models.py:173

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

Continued on next page

https://github.com/mindsdb/mindsdb/issues/9467

A
ppendix

B.
FullC

rash
D

ata
162

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb ValueError@<python_internal>

/lib/python3.8/site-packages/
requests/utils.py:1038

X X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0.1, mindsdb_100_0.2, mindsdb_1_0,
mindsdb_1_0.1, mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/web_h
andler/urlcrawl_helpers.py:261

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_1_0, mindsdb_1_0.1, mindsdb_1_0.2,
mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/np
m_handler/npm_tables.py:15

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/we
b_handler/urlcrawl_helpers.py
:19

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/byom_
handler/proc_wrapper.py:54

mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/utilities/datasets
/dataset.py:66

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/openb
b_handler/openbb_tables.py:25

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb OSError@mindsdb/mindsdb/i
nterfaces/storage/fs.py:108

X X X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/sur
realdb_handler/utils/surreal_g
et_info.py:11

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/lightda
sh_handler/lightdash_tables.py
:22

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb TypeError@mindsdb/mindsdb
/interfaces/storage/fs.py:59

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:42

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:19

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:42

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb TypeError@mindsdb/mindsdb
/integrations/handlers/lightda
sh_handler/lightdash_tables.py
:16

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb ValueError@mindsdb/mindsdb
/integrations/handlers/eventst
oredb_handler/utils/helpers.p
y:39

X X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:191

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
163

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb ValueError@mindsdb/mindsdb

/integrations/utilities/utils.py:
11

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_100_0.1, mindsdb_100_0.2,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/handlers/lig
htdash_handler/lightdash_tabl
es.py:33

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:257

X X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_100_0.1, mindsdb_100_0.2,
mindsdb_10000_0

mindsdb AttributeError@mindsdb/mind
sdb/integrations/utilities/data
sets/dataset.py:66

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb OSError@mindsdb/mindsdb/i
nterfaces/storage/fs.py:110

X X mindsdb_acl2s, mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@mindsdb/mindsdb
/api/executor/utilities/sql.py:
130

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_10000_0

mindsdb KeyError@mindsdb_sql/minds
db_sql/render/sqlalchemy_ren
der.py:159

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_acl2s, mindsdb_10000_0

mindsdb ValueError@werkzeug/src/we
rkzeug/_internal.py:140

X X X mindsdb_10000_0.1, mindsdb_10000_0

mindsdb PermissionError@mindsdb/mi
ndsdb/interfaces/storage/fs.p
y:108

X X mindsdb_1_0.1, mindsdb_acl2s, mindsdb_10000_0.1

mindsdb PermissionError@mindsdb/mi
ndsdb/interfaces/storage/fs.p
y:108

X X mindsdb_10000_0.2, mindsdb_100_0, mindsdb_acl2s,
mindsdb_100_0.1, mindsdb_100_0.2, mindsdb_1_0,
mindsdb_1_0.1, mindsdb_1_0.2

mindsdb PermissionError@mindsdb/mi
ndsdb/interfaces/storage/fs.p
y:108

X X mindsdb_1_0.1, mindsdb_100_0.1, mindsdb_1_0.2,
mindsdb_1_0

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:19

X X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:19

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:42

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:42

X X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb TypeError@<python_internal>
/lib/python3.8/pathlib.py:667

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2,
mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:191

X mindsdb_acl2s, mindsdb_100_0, mindsdb_100_0.1,
mindsdb_100_0.2

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:210

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2,
mindsdb_10000_0

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
164

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
mindsdb TypeError@<python_internal>

/lib/python3.8/re.py:231
X mindsdb_10000_0.2, mindsdb_10000_0.1,

mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb AttributeError@<python_intern
al>/lib/python3.8/urllib/parse
.py:119

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2,
mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/site-packages/
requests/models.py:173

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb ValueError@<python_internal>
/lib/python3.8/site-packages/
requests/models.py:173

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb ValueError@<python_internal>
/lib/python3.8/site-packages/
requests/utils.py:1050

X X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_1_0, mindsdb_1_0.1, mindsdb_10000_0

mindsdb ValueError@<python_internal>
/lib/python3.8/json/encoder.p
y:257

X X X mindsdb_10000_0

mindsdb UnicodeEncodeError@mindsdb
/mindsdb/utilities/cache.py:82

X mindsdb_1_0.2, mindsdb_100_0.2

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:19

X X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2

mindsdb OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0, mindsdb_1_0.1,
mindsdb_1_0.2, mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:42

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb TypeError@<python_internal>
/lib/python3.8/genericpath.py
:19

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb OverflowError@<python_inter
nal>/lib/python3.8/genericpat
h.py:42

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

mindsdb TypeError@<python_internal>
/lib/python3.8/pathlib.py:667

X mindsdb_10000_0.2, mindsdb_10000_0.1,
mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2,
mindsdb_10000_0

mindsdb TypeError@<python_internal>
/lib/python3.8/re.py:191

X mindsdb_100_0, mindsdb_acl2s, mindsdb_100_0.1,
mindsdb_100_0.2, mindsdb_1_0.1, mindsdb_1_0.2

django NameError@django/django/co
ntrib/admindocs/utils.py:124

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django TypeError@<python_internal>
/lib/python3.8/re.py:277

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:173

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
165

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
django AttributeError@django/django

/contrib/gis/gdal/prototypes/
generation.py:36

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/db/migrations/migration.py:
239

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
geom.py:20

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:27

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django TypeError@django/django/util
s/deconstruct.py:59

django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:123

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:36

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django TypeError@django/django/util
s/version.py:61

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:91

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:157

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:154

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:36

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:80

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:51

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:71

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
166

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
django AttributeError@django/django

/contrib/admin/decorators.py:
67

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/admin/decorators.py:
65

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/admin/decorators.py:
71

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
geom.py:32

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:36

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:164

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/utils/jslex.py:28

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/admin/decorators.py:
25

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/admin/decorators.py:
23

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:98

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django TypeError@django/django/util
s/version.py:61

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/utils/deconstruct.py:52

X django_10000_0.1, django_1_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_100_0.2, django_10000_0, django_100_0

django AssertionError@django/django
/utils/version.py:61

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django AttributeError@django/django
/contrib/gis/gdal/prototypes/
generation.py:150

X django_10000_0.1, django_1_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0,
django_1_0.2, django_100_0.2, django_10000_0,
django_100_0

django AssertionError@django/django
/utils/regex_helper.py:350

django_10000_0.1, django_1_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

Continued on next page

A
ppendix

B.
FullC

rash
D

ata
167

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
django TypeError@<python_internal>

/lib/python3.8/sre_parse.py:9
48

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django OverflowError@<python_inter
nal>/lib/python3.8/sre_compi
le.py:780

X django_1_0.1, django_100_0.1, django_10000_0.2,
django_acl2s, django_1_0.2, django_1_0,
django_100_0.2, django_100_0

django AttributeError@django/django
/contrib/admin/decorators.py:
69

X django_10000_0.1, django_1_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_100_0.2, django_10000_0, django_100_0

django TypeError@django/django/util
s/jslex.py:28

X django_10000_0.1, django_1_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django AssertionError@django/django
/utils/version.py:61

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django AssertionError@django/django
/utils/version.py:62

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django AssertionError@django/django
/utils/version.py:62

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_1_0, django_100_0.2, django_10000_0,
django_100_0

django OverflowError@<python_inter
nal>/lib/python3.8/sre_compi
le.py:780

X django_1_0.1, django_100_0.1, django_acl2s,
django_1_0, django_1_0.2, django_100_0.2,
django_100_0

django TypeError@<python_internal>
/lib/python3.8/re.py:277

X django_1_0.1, django_10000_0.1, django_100_0.1,
django_10000_0.2, django_acl2s, django_1_0.2,
django_100_0.2, django_10000_0, django_100_0

django TypeError@<python_internal>
/lib/python3.8/sre_parse.py:9
48

X django_1_0.1, django_100_0.1, django_acl2s,
django_1_0.2, django_100_0.2, django_100_0

black AssertionError@black/src/blac
k/strings.py:140

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black AssertionError@black/src/blac
k/strings.py:137

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black AssertionError@black/src/blac
k/strings.py:144

X black_acl2s, black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X X https://github.com/psf/black/issues/4400 black_100_0, black_1_0.1, black_100_0.1, black_1_0,
black_100_0.2, black_10000_0.2, black_1_0.2

black IndentationError@<python_int
ernal>/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@black/src/black/n
umerics.py:41

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black OverflowError@black/src/blac
k/nodes.py:414

X black_100_0, black_1_0.1, black_100_0.1, black_1_0,
black_100_0.2, black_1_0.2

Continued on next page

https://github.com/psf/black/issues/4400

A
ppendix

B.
FullC

rash
D

ata
168

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
black OverflowError@black/src/blac

k/nodes.py:413
X black_100_0, black_1_0.1, black_100_0.1, black_1_0,

black_100_0.2, black_1_0.2
black MemoryError@black/src/black

/nodes.py:413
X black_100_0, black_1_0.1, black_10000_0,

black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@black/src/black
/nodes.py:414

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@black/src/black/n
umerics.py:18

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@black/src/black/n
umerics.py:41

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black IndentationError@<python_int
ernal>/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@black/src/black
/handle_ipynb_magics.py:275

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2, black_1_0.2,
black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/pathlib.py:452

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@black/src/black/n
umerics.py:41

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2, black_1_0.2

black UnicodeDecodeError@<python
_internal>/lib/python3.8/code
cs.py:322

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black JSONDecodeError@<python_in
ternal>/lib/python3.8/json/de
coder.py:353

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black AssertionError@black/src/blac
k/strings.py:140

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black AssertionError@black/src/blac
k/strings.py:137

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black TypeError@black/src/black/o
utput.py:20

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_10000_0.1, black_100_0.2,
black_10000_0.2, black_1_0.2

black TypeError@black/src/black/o
utput.py:20

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_10000_0.1, black_100_0.2,
black_10000_0.2, black_1_0.2

Continued on next page

https://github.com/psf/black/issues/4400

A
ppendix

B.
FullC

rash
D

ata
169

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
black TypeError@black/src/black/o

utput.py:29
X black_100_0, black_acl2s, black_1_0.1, black_10000_0,

black_100_0.1, black_10000_0.1, black_100_0.2,
black_10000_0.2, black_1_0.2

black TypeError@black/src/black/o
utput.py:29

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_10000_0.1, black_100_0.2,
black_10000_0.2, black_1_0.2

black IndexError@black/src/black/n
umerics.py:32

X black_100_0, black_acl2s, black_1_0.1, black_10000_0,
black_100_0.1, black_10000_0.1, black_100_0.2,
black_10000_0.2, black_1_0.2

black IndexError@black/src/black/st
rings.py:188

X black_100_0, black_acl2s, black_1_0, black_1_0.1,
black_10000_0, black_100_0.1, black_10000_0.1,
black_100_0.2, black_10000_0.2, black_1_0.2

black AssertionError@black/src/blac
k/handle_ipynb_magics.py:171

X black_100_0, black_acl2s, black_1_0, black_1_0.1,
black_10000_0, black_100_0.1, black_10000_0.1,
black_100_0.2, black_10000_0.2, black_1_0.2

black AssertionError@black/src/blac
k/strings.py:144

X black_100_0, black_acl2s, black_1_0, black_1_0.1,
black_10000_0, black_100_0.1, black_10000_0.1,
black_100_0.2, black_10000_0.2, black_1_0.2

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_acl2s, black_100_0, black_1_0.1, black_100_0.1,
black_1_0, black_100_0.2, black_10000_0.2,
black_1_0.2, black_10000_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_100_0, black_1_0, black_1_0.1, black_100_0.1,
black_10000_0.1, black_1_0.2

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_acl2s, black_100_0, black_1_0.1, black_100_0.1,
black_1_0, black_100_0.2

black OSError@<python_internal>/li
b/python3.8/tempfile.py:542

X black_acl2s

black OSError@<python_internal>/li
b/python3.8/tempfile.py:542

X black_acl2s

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_100_0, black_acl2s, black_100_0.1,
black_100_0.2, black_1_0.2

black IndentationError@<python_int
ernal>/lib/python3.8/tokenize
.py:512

X black_acl2s

black UnicodeEncodeError@<python
_internal>/lib/python3.8/tem
pfile.py:473

X black_100_0, black_10000_0

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_1_0, black_100_0.1, black_1_0.1

black TypeError@black/src/black/o
utput.py:53

X black_acl2s

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black IndentationError@<python_int
ernal>/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_1_0, black_100_0.2, black_1_0.2

Continued on next page

https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400

A
ppendix

B.
FullC

rash
D

ata
170

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
black IndentationError@<python_int

ernal>/lib/python3.8/ast.py:47
X black_100_0, black_1_0.1, black_10000_0,

black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/pathlib.py:452

X black_100_0, black_1_0.1, black_10000_0, black_1_0,
black_10000_0.2, black_1_0.2, black_10000_0.1

black OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X black_100_0, black_1_0.1, black_10000_0, black_1_0,
black_10000_0.2, black_1_0.2, black_10000_0.1

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black UnicodeDecodeError@<python
_internal>/lib/python3.8/code
cs.py:322

X black_1_0.1, black_10000_0, black_1_0, black_100_0.2,
black_10000_0.2, black_10000_0.1

black JSONDecodeError@<python_in
ternal>/lib/python3.8/json/de
coder.py:353

X black_100_0, black_1_0.1, black_10000_0,
black_100_0.1, black_1_0, black_100_0.2,
black_10000_0.2, black_1_0.2, black_10000_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_100_0.1

black MemoryError@<python_intern
al>/lib/python3.8/ast.py:47

X https://github.com/psf/black/issues/4400 black_100_0.2

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_acl2s

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_acl2s

black IndentationError@<python_int
ernal>/lib/python3.8/ast.py:47

X black_acl2s

black SyntaxError@<python_internal
>/lib/python3.8/ast.py:47

X black_acl2s

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_acl2s

black IndentationError@<python_int
ernal>/lib/python3.8/ast.py:47

X black_acl2s

black ValueError@<python_internal>
/lib/python3.8/pathlib.py:452

X black_acl2s

black OSError@<python_internal>/li
b/python3.8/pathlib.py:1198

X X black_acl2s

black OSError@<python_internal>/li
b/python3.8/tempfile.py:558

X black_acl2s

black OSError@<python_internal>/li
b/python3.8/tempfile.py:558

X black_acl2s

black ValueError@<python_internal>
/lib/python3.8/ast.py:47

X black_acl2s

black IndentationError@<python_int
ernal>/lib/python3.8/tokenize
.py:512

X black_acl2s

black UnicodeDecodeError@<python
_internal>/lib/python3.8/code
cs.py:322

X black_acl2s

black JSONDecodeError@<python_in
ternal>/lib/python3.8/json/de
coder.py:353

X black_acl2s

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:57

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:57

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

Continued on next page

https://github.com/psf/black/issues/4400
https://github.com/psf/black/issues/4400

A
ppendix

B.
FullC

rash
D

ata
171

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
manticore AssertionError@manticore/ma

nticore/core/smtlib/operators.
py:57

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:57

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore KeyError@manticore/manticor
e/utils/install_helper.py:14

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:17
2

https://github.com/trailofbits/manticore/issues/2660 manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/operators.
py:172

https://github.com/trailofbits/manticore/issues/2660 manticore_acl2s, manticore_1_0.1, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_100_0.2

manticore ValueError@manticore/mantic
ore/core/smtlib/operators.py:
172

https://github.com/trailofbits/manticore/issues/2660 manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore MemoryError@manticore/man
ticore/core/smtlib/operators.p
y:172

https://github.com/trailofbits/manticore/issues/2660 manticore_10000_0.1, manticore_1_0.1,
manticore_acl2s, manticore_100_0, manticore_1_0,
manticore_10000_0, manticore_10000_0.2,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:14
8

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/expression.py
:547

https://github.com/trailofbits/manticore/issues/2651 manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/expressio
n.py:547

https://github.com/trailofbits/manticore/issues/2651 manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore MemoryError@manticore/man
ticore/core/smtlib/expression.
py:547

https://github.com/trailofbits/manticore/issues/2651 manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:12
0

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:13
9

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:201

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:68

X manticore_10000_0.1, manticore_1_0.1,
manticore_acl2s, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

Continued on next page

https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2660
https://github.com/trailofbits/manticore/issues/2651
https://github.com/trailofbits/manticore/issues/2651
https://github.com/trailofbits/manticore/issues/2651

A
ppendix

B.
FullC

rash
D

ata
172

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
manticore TypeError@manticore/mantico

re/core/smtlib/operators.py:68
X manticore_1_0.1, manticore_acl2s, manticore_100_0,

manticore_1_0, manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:68

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:68

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AttributeError@manticore/man
ticore/ethereum/cli.py:90

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AttributeError@manticore/man
ticore/wasm/cli.py:14

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AttributeError@<python_intern
al>/lib/python3.8/site-packag
es/atheris/function_hooks.py:3
72

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/visitors.py
:1066

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:13
4

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:94

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AttributeError@manticore/man
ticore/utils/config.py:309

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore RecursionError@manticore/ma
nticore/core/smtlib/operators.
py:51

https://github.com/trailofbits/manticore/issues/2652 manticore_acl2s, manticore_1_0.1, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:15
7

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.1, manticore_100_0,
manticore_10000_0, manticore_1_0,
manticore_10000_0.2, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:149

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0,
manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/operators.py:
148

https://github.com/trailofbits/manticore/issues/2653 manticore_10000_0.1, manticore_1_0.1,
manticore_100_0, manticore_10000_0,
manticore_10000_0.2, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/operators.
py:148

https://github.com/trailofbits/manticore/issues/2653 manticore_1_0.1, manticore_100_0, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

Continued on next page

https://github.com/trailofbits/manticore/issues/2652
https://github.com/trailofbits/manticore/issues/2653
https://github.com/trailofbits/manticore/issues/2653

A
ppendix

B.
FullC

rash
D

ata
173

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
manticore MemoryError@manticore/man

ticore/core/smtlib/operators.p
y:148

https://github.com/trailofbits/manticore/issues/2653 manticore_1_0.1, manticore_100_0, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:11
8

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AttributeError@manticore/man
ticore/core/smtlib/operators.p
y:142

X manticore_10000_0.1, manticore_1_0.1,
manticore_100_0, manticore_10000_0, manticore_1_0,
manticore_10000_0.2, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:14
1

X manticore_10000_0.1, manticore_1_0.1,
manticore_100_0, manticore_10000_0,
manticore_10000_0.2, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/operators.py:
139

https://github.com/trailofbits/manticore/issues/2654 manticore_10000_0.1, manticore_1_0.1,
manticore_100_0, manticore_10000_0,
manticore_10000_0.2, manticore_1_0.2,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:202

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.1, manticore_1_0.2, manticore_100_0,
manticore_1_0, manticore_10000_0.2,
manticore_10000_0, manticore_100_0.2,
manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:203

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.2, manticore_1_0.1, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore RecursionError@manticore/ma
nticore/core/smtlib/operators.
py:62

https://github.com/trailofbits/manticore/issues/2652 manticore_acl2s, manticore_1_0.1, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/visitors.py
:41

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/wasm/types.py:465

X X X manticore_10000_0.1, manticore_1_0.1,
manticore_1_0.2, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/visitors.py
:41

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/solver.py:
103

X X manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:26

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/visitors.py
:41

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/operators.py:
134

https://github.com/trailofbits/manticore/issues/2655 manticore_10000_0.1, manticore_acl2s,
manticore_1_0.1, manticore_100_0,
manticore_10000_0, manticore_10000_0.2,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

Continued on next page

https://github.com/trailofbits/manticore/issues/2653
https://github.com/trailofbits/manticore/issues/2654
https://github.com/trailofbits/manticore/issues/2652
https://github.com/trailofbits/manticore/issues/2655

A
ppendix

B.
FullC

rash
D

ata
174

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
manticore TypeError@manticore/mantico

re/core/smtlib/operators.py:92
X manticore_10000_0.1, manticore_10000_0.2,

manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:38

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:38

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_acl2s, manticore_100_0,
manticore_1_0, manticore_1_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ZeroDivisionError@manticore/
manticore/core/smtlib/operat
ors.py:157

https://github.com/trailofbits/manticore/issues/2656 manticore_10000_0.1, manticore_acl2s,
manticore_100_0, manticore_10000_0.2,
manticore_10000_0, manticore_100_0.2,
manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:12
1

X manticore_10000_0.2, manticore_10000_0,
manticore_acl2s, manticore_10000_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:11
9

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.2, manticore_1_0.1, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/operators.py:
141

https://github.com/trailofbits/manticore/issues/2654 manticore_10000_0.1, manticore_1_0.2,
manticore_100_0, manticore_10000_0.2,
manticore_10000_0, manticore_100_0.2,
manticore_100_0.1

manticore AssertionError@manticore/ma
nticore/core/smtlib/operators.
py:204

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.1, manticore_1_0.2, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:95

X manticore_10000_0.2, manticore_10000_0,
manticore_acl2s, manticore_10000_0.1

manticore TypeError@manticore/mantico
re/core/smtlib/operators.py:93

X manticore_10000_0.1, manticore_acl2s,
manticore_1_0.2, manticore_1_0.1, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@ply/ply/lex.py:253 X manticore_acl2s
manticore AttributeError@manticore/man

ticore/core/smtlib/solver.py:9
3

X manticore_acl2s

manticore ValueError@manticore/mantic
ore/core/smtlib/solver.py:96

X manticore_acl2s

manticore MemoryError@manticore/man
ticore/core/smtlib/operators.p
y:134

https://github.com/trailofbits/manticore/issues/2657 manticore_10000_0.1, manticore_acl2s,
manticore_1_0.1, manticore_100_0,
manticore_10000_0, manticore_10000_0.2,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/operators.
py:134

https://github.com/trailofbits/manticore/issues/2657 manticore_acl2s, manticore_1_0.1, manticore_100_0,
manticore_1_0.2, manticore_100_0.2,
manticore_100_0.1

manticore MemoryError@manticore/man
ticore/core/smtlib/operators.p
y:139

https://github.com/trailofbits/manticore/issues/2658 manticore_10000_0.1, manticore_1_0.1,
manticore_1_0.2, manticore_100_0,
manticore_10000_0.2, manticore_10000_0,
manticore_100_0.2, manticore_100_0.1

manticore TypeError@manticore/mantico
re/core/parser/parser.py:206

https://github.com/trailofbits/manticore/issues/2659 manticore_1_0, manticore_1_0.2, manticore_1_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/operators.
py:139

https://github.com/trailofbits/manticore/issues/2658 manticore_1_0.2, manticore_100_0.2,
manticore_100_0, manticore_100_0.1

Continued on next page

https://github.com/trailofbits/manticore/issues/2656
https://github.com/trailofbits/manticore/issues/2654
https://github.com/trailofbits/manticore/issues/2657
https://github.com/trailofbits/manticore/issues/2657
https://github.com/trailofbits/manticore/issues/2658
https://github.com/trailofbits/manticore/issues/2659
https://github.com/trailofbits/manticore/issues/2658

A
ppendix

B.
FullC

rash
D

ata
175

– continued from previous page
Repository Exception Site EX FO EE ER LB AE TE Report Link Experiments
manticore MemoryError@manticore/man

ticore/core/smtlib/operators.p
y:141

https://github.com/trailofbits/manticore/issues/2658 manticore_1_0.2, manticore_100_0.2,
manticore_100_0, manticore_100_0.1

manticore OverflowError@manticore/ma
nticore/core/smtlib/operators.
py:141

https://github.com/trailofbits/manticore/issues/2658 manticore_1_0.2, manticore_100_0.2,
manticore_100_0, manticore_100_0.1

manticore AttributeError@<python_intern
al>/lib/python3.8/site-packag
es/atheris/function_hooks.py:3
72

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0.2,
manticore_10000_0, manticore_100_0.2,
manticore_100_0.1

manticore AttributeError@<python_intern
al>/lib/python3.8/site-packag
es/atheris/function_hooks.py:3
72

X manticore_10000_0.1, manticore_10000_0.2,
manticore_1_0.1, manticore_100_0, manticore_1_0.2,
manticore_10000_0, manticore_100_0.2,
manticore_100_0.1

manticore ValueError@manticore/mantic
ore/core/smtlib/solver.py:94

X X manticore_acl2s

mypy N/A X https://github.com/python/mypy/pull/16897 mypy_10000_0, mypy_10000_0.1, mypy_1_0.1,
mypy_1_0, mypy_100_0, mypy_1_0.2, mypy_acl2s,
mypy_100_0.2, mypy_100_0.1, mypy_10000_0.2

https://github.com/trailofbits/manticore/issues/2658
https://github.com/trailofbits/manticore/issues/2658
https://github.com/python/mypy/pull/16897

176

Bibliography

[1] AFL (american fuzzy lop). URL: https://afl-1.readthedocs.io/en/latest/
(visited on 03/08/2024).

[2] Announcing OSS-Fuzz: Continuous fuzzing for open source software. Dec. 2016.
URL: https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-
continuous-fuzzing.html (visited on 03/07/2024).

[3] Andrea Arcuri and Lionel Briand. “A practical guide for using statistical tests
to assess randomized algorithms in software engineering”. In: Proceedings of
the 33rd International Conference on Software Engineering. ICSE ’11. event-place:
Waikiki, Honolulu, HI, USA. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 1–10. ISBN: 978-1-4503-0445-0. DOI: 10.1145/1985793.
1985795.

[4] Automatic stub generation (stubgen). URL: https://mypy.readthedocs.io/en/
stable/stubgen.html (visited on 03/07/2024).

[5] Jayanti Bhandari Neupane et al. “Characterization of Leptazolines A–D, Polar
Oxazolines from the Cyanobacterium Leptolyngbya sp., Reveals a Glitch with
the “Willoughby–Hoye” Scripts for Calculating NMR Chemical Shifts”. In: Or-
ganic Letters 21.20 (Oct. 2019), pp. 8449–8453. ISSN: 1523-7060, 1523-7052. DOI:
10.1021/acs.orglett.9b03216. (Visited on 08/05/2024).

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-
based Greybox Fuzzing as Markov Chain”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, 1032–1043. ISBN:
9781450341394. DOI: 10.1145/2976749.2978428.

[7] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. “FUZZOLIC:
Mixing fuzzing and concolic execution”. In: Computers & Security 108 (2021),
p. 102368.

[8] George Bouliotis and Lucinda Billingham. “Crossing survival curves: alterna-
tives to the log-rank test”. In: Trials 12.S1 (Dec. 2011), A137. ISSN: 1745-6215.
DOI: 10.1186/1745-6215-12-S1-A137. (Visited on 04/12/2024).

[9] Andy Bowden. Fuzzing: Common Tools and Techniques. URL: https : / / www .
coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques?
feed=blogs (visited on 03/07/2024).

https://afl-1.readthedocs.io/en/latest/
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://mypy.readthedocs.io/en/stable/stubgen.html
https://mypy.readthedocs.io/en/stable/stubgen.html
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1186/1745-6215-12-S1-A137
https://www.coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques?feed=blogs
https://www.coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques?feed=blogs
https://www.coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques?feed=blogs

Bibliography 177

[10] Sergey Bratus et al. “Exploit Programming: From Buffer Overflows to "Weird
Machines" and Theory of Computation”. In: login Usenix Mag. 36.6 (2011). URL:
https://www.usenix.org/publications/login/december-2011-volume-36-
number-6/exploit-programming-buffer-overflows-weird.

[11] I. E. Bronshteyn. “Study of defects in a program code in Python”. In: Program-
ming and Computer Software 39.6 (Nov. 2013), pp. 279–284. ISSN: 0361-7688, 1608-
3261. DOI: 10.1134/S0361768813060017. (Visited on 03/08/2024).

[12] Marcel Böhme and Brandon Falk. “Fuzzing: on the exponential cost of vul-
nerability discovery”. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering. Virtual Event USA: ACM, Nov. 2020, pp. 713–724. ISBN: 978-1-4503-
7043-1. DOI: 10.1145/3368089.3409729. (Visited on 03/19/2024).

[13] Harsh Chamarthi et al. “The "ACL2" Sedan Theorem Proving System”. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). 2011. DOI:
10.1007/978-3-642-19835-9_27.

[14] Harsh Raju Chamarthi. “Interactive non-theorem disproving”. PhD the-
sis. Northeastern University, 2016. DOI: 10 . 17760 / D20467205. (Visited on
08/14/2024).

[15] Harsh Raju Chamarthi, Peter C. Dillinger, and Panagiotis Manolios. “Data Def-
initions in the ACL2 Sedan”. In: Electronic Proceedings in Theoretical Computer
Science 152 (June 2014). arXiv:1406.1557 [cs], pp. 27–48. ISSN: 2075-2180. DOI:
10.4204/EPTCS.152.3. (Visited on 03/08/2024).

[16] Harsh Raju Chamarthi and Panagiotis Manolios. “Automated specification
analysis using an interactive theorem prover”. In: International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11. Ed. by Per Bjesse and
Anna Slobodová. FMCAD Inc., 2011, pp. 46–53. URL: https://dl.acm.org/
doi/10.5555/2157654.2157665.

[17] Harsh Raju Chamarthi and Panagiotis Manolios. “Automated specification
analysis using an interactive theorem prover”. In: 2011 Formal Methods in
Computer-Aided Design (FMCAD). 2011, pp. 46–53.

[18] Harsh Raju Chamarthi et al. “Integrating Testing and Interactive Theorem
Proving”. In: International Workshop on the ACL2 Theorem Prover and its Applica-
tions. EPTCS. 2011. DOI: 10.4204/EPTCS.70.1.

[19] Harsh Raju Chamarthi et al. “Integrating Testing and Interactive Theorem
Proving”. In: Proceedings 10th International Workshop on the ACL2 Theorem Prover
and its Applications. Ed. by David S. Hardin and Julien Schmaltz. Vol. 70.
EPTCS. 2011, pp. 4–19. DOI: 10.4204/EPTCS.70.1.

https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://doi.org/10.1134/S0361768813060017
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.17760/D20467205
https://doi.org/10.4204/EPTCS.152.3
https://dl.acm.org/doi/10.5555/2157654.2157665
https://dl.acm.org/doi/10.5555/2157654.2157665
https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.4204/EPTCS.70.1

Bibliography 178

[20] Harsh Raju Chamarthi et al. “Integrating Testing and Interactive Theorem
Proving”. In: Electronic Proceedings in Theoretical Computer Science 70 (Oct. 2011).
arXiv:1105.4394 [cs], pp. 4–19. ISSN: 2075-2180. DOI: 10 . 4204 / EPTCS . 70 . 1.
(Visited on 08/14/2024).

[21] Jake Corina et al. “DIFUZE: Interface Aware Fuzzing for Kernel Drivers”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’17. New York, NY, USA: Association for Computing Machinery,
2017, 2123–2138. ISBN: 9781450349468. DOI: 10.1145/3133956.3134069.

[22] Angel Cronin, Lu Tian, and Hajime Uno. “Strmst2 and Strmst2pw: New
Commands to Compare Survival Curves Using the Restricted Mean Sur-
vival time”. In: The Stata Journal: Promoting communications on statistics
and Stata 16.3 (Sept. 2016), pp. 702–716. ISSN: 1536-867X, 1536-8734. DOI:
10.1177/1536867X1601600310. (Visited on 06/26/2024).

[23] Addison Crump et al. “LIBAFL LIBFUZZER: LIBFUZZER on Top of LIBAFL”.
In: 2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing
(SBFT). Melbourne, Australia: IEEE, May 2023, pp. 70–72. ISBN: 9798350301823.
DOI: 10.1109/SBFT59156.2023.00021. (Visited on 07/31/2024).

[24] Sandeep Dalal and Rajender Singh Chhillar. “Empirical study of root cause
analysis of software failure”. In: ACM SIGSOFT Software Engineering Notes 38.4
(July 2013), pp. 1–7. ISSN: 0163-5948. DOI: 10.1145/2492248.2492263. (Visited
on 03/08/2024).

[25] Neil T. Dantam. CL-FUZZ. 2018. URL: https://github.com/ndantam/cl-fuzz
(visited on 08/20/2024).

[26] Demetris T Christopoulos. Reliable computations of knee point for a curve and in-
troduction of a unit invariant estimation. 2014. DOI: 10.13140/2.1.3111.5844.

[27] Anna van Deusen. Python Popularity: The Rise of a Global Programming Language.
Jan. 2023. URL: https://flatironschool.com/blog/python-popularity-the-
rise-of-a-global-programming-language/ (visited on 06/27/2024).

[28] Luca Di Grazia and Michael Pradel. “The evolution of type annotations in
python: an empirical study”. In: Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engi-
neering. Singapore Singapore: ACM, Nov. 2022, pp. 209–220. ISBN: 978-1-4503-
9413-0. DOI: 10.1145/3540250.3549114. (Visited on 03/08/2024).

[29] Will Dietz et al. “Understanding Integer Overflow in C/C++”. In: ACM Trans.
Softw. Eng. Methodol. 25.1 (Dec. 2015). ISSN: 1049-331X. DOI: 10.1145/2743019.

[30] Peter C Dillinger et al. “ACL2s: “The ACL2 Sedan””. In: Electronic Notes in The-
oretical Computer Science 174.2 (2007), pp. 3–18.

[31] Yiran Ding et al. LongRoPE: Extending LLM Context Window Beyond 2 Million
Tokens. arXiv:2402.13753 [cs]. Feb. 2024. URL: http://arxiv.org/abs/2402.
13753 (visited on 09/07/2024).

https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1177/1536867X1601600310
https://doi.org/10.1109/SBFT59156.2023.00021
https://doi.org/10.1145/2492248.2492263
https://github.com/ndantam/cl-fuzz
https://doi.org/10.13140/2.1.3111.5844
https://flatironschool.com/blog/python-popularity-the-rise-of-a-global-programming-language/
https://flatironschool.com/blog/python-popularity-the-rise-of-a-global-programming-language/
https://doi.org/10.1145/3540250.3549114
https://doi.org/10.1145/2743019
http://arxiv.org/abs/2402.13753
http://arxiv.org/abs/2402.13753

Bibliography 179

[32] Julian Dolby et al. “Ariadne: analysis for machine learning programs”. In: Pro-
ceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. MAPL 2018. Philadelphia, PA, USA: Association
for Computing Machinery, 2018, 1–10. ISBN: 9781450358347. DOI: 10 . 1145 /
3211346.3211349.

[33] Ran Dubin. “Disarming Attacks Inside Neural Network Models”. In: IEEE Ac-
cess 11 (2023), pp. 124295–124303. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2023.
3330141.

[34] Aryaz Eghbali and Michael Pradel. “DynaPyt: a dynamic analysis framework
for Python”. In: Proceedings of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. Singa-
pore Singapore: ACM, Nov. 2022, pp. 760–771. ISBN: 978-1-4503-9413-0. DOI:
10.1145/3540250.3549126. (Visited on 08/29/2024).

[35] J. Emmerson and J.M. Brown. “Understanding Survival Analysis in Clinical
Trials”. In: Clinical Oncology 33.1 (Jan. 2021), pp. 12–14. ISSN: 09366555. DOI:
10.1016/j.clon.2020.07.014. (Visited on 08/07/2024).

[36] Andrea Fioraldi et al. “LibAFL: A Framework to Build Modular and Reusable
Fuzzers”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. Los Angeles CA USA: ACM, Nov. 2022, pp. 1051–
1065. ISBN: 978-1-4503-9450-5. DOI: 10 . 1145 / 3548606 . 3560602. (Visited on
07/31/2024).

[37] Gordon Fraser and Andrea Arcuri. “Whole Test Suite Generation”. In: IEEE
Transactions on Software Engineering 39.2 (Feb. 2013), pp. 276–291. ISSN: 0098-
5589. DOI: 10.1109/TSE.2012.14. (Visited on 03/09/2024).

[38] Gordon Fraser and Andreas Zeller. “Mutation-Driven Generation of Unit
Tests and Oracles”. In: IEEE Transactions on Software Engineering 38.2 (Mar.
2012), pp. 278–292. ISSN: 0098-5589. DOI: 10.1109/TSE.2011.93. (Visited on
03/09/2024).

[39] Fuzzing. URL: https : / / owasp . org / www - community / Fuzzing (visited on
06/27/2024).

[40] Fuzzing. URL: https://firefox-source-docs.mozilla.org/tools/fuzzing/
index.html (visited on 03/07/2024).

[41] General Python FAQ. URL: https://docs.python.org/3/faq/general.html#
why-was-python-created-in-the-first-place (visited on 06/27/2024).

[42] Leon Jay Gleser. “Bootstrap Confidence Intervals: Comment”. In: Statistical Sci-
ence 11.3 (Aug. 1996), pp. 219–221. URL: https://www.jstor.org/stable/
2246113.

[43] Liang Gong et al. “DLint: Dynamically checking bad coding practices in
JavaScript”. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis. 2015, pp. 94–105.

https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1109/ACCESS.2023.3330141
https://doi.org/10.1109/ACCESS.2023.3330141
https://doi.org/10.1145/3540250.3549126
https://doi.org/10.1016/j.clon.2020.07.014
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2011.93
https://owasp.org/www-community/Fuzzing
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place
https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place
https://www.jstor.org/stable/2246113
https://www.jstor.org/stable/2246113

Bibliography 180

[44] Google. How To Split A Fuzzer-Generated Input Into Several. URL: https :
//github.com/google/fuzzing/blob/master/docs/split-inputs.md (visited
on 03/25/2024).

[45] Google Information Security team. Announcing the Atheris Python Fuzzer. URL:
https : / / opensource . googleblog . com / 2020 / 12 / announcing - atheris -
python-fuzzer.html (visited on 04/06/2024).

[46] Robert J. Grissom and John J. Kim. Effect sizes for research: univariate and multi-
variate applications. 2nd ed. New York: Routledge, 2012.

[47] Samuel Groß et al. “FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulner-
abilities”. In: Proceedings 2023 Network and Distributed System Security Sympo-
sium. San Diego, CA, USA: Internet Society, 2023. ISBN: 978-1-891562-83-9. DOI:
10.14722/ndss.2023.24290. (Visited on 03/10/2024).

[48] Emre Güler et al. “Atropos: Effective fuzzing of web applications for server-
side vulnerabilities”. In: USENIX Security Symposium. 2024.

[49] Yimeng Guo et al. “Generating Python Type Annotations from Type Inference:
How Far Are We?” In: ACM Transactions on Software Engineering and Method-
ology 33.5 (June 2024), pp. 1–38. ISSN: 1049-331X, 1557-7392. DOI: 10 . 1145 /
3652153. (Visited on 06/22/2024).

[50] Csaba Györgyi, Sándor Laki, and Stefan Schmid. “Toward Highly Reliable Pro-
grammable Data Planes: Verification of P4 Code Generation”. In: 2023 IEEE
9th International Conference on Network Softwarization (NetSoft). Madrid, Spain:
IEEE, June 2023, pp. 1–5. ISBN: 9798350399806. DOI: 10.1109/NetSoft57336.
2023.10175397. (Visited on 03/08/2024).

[51] Kyunghwa Han and Inkyung Jung. “Restricted Mean Survival Time for Sur-
vival Analysis: A Quick Guide for Clinical Researchers”. In: Korean Journal of
Radiology 23.5 (2022), p. 495. ISSN: 1229-6929, 2005-8330. DOI: 10.3348/kjr.
2022.0061. (Visited on 04/05/2024).

[52] Quinn Hanam et al. “Finding patterns in static analysis alerts: improving ac-
tionable alert ranking”. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. MSR 2014. New York, NY, USA: Association for Comput-
ing Machinery, 2014, 152–161. ISBN: 9781450328630. DOI: 10.1145/2597073.
2597100.

[53] Stefan Hanenberg et al. “An empirical study on the impact of static typing on
software maintainability”. In: Empirical Software Engineering 19.5 (Oct. 2014),
pp. 1335–1382. ISSN: 1382-3256, 1573-7616. DOI: 10.1007/s10664-013-9289-1.
(Visited on 03/08/2024).

[54] Xiaoyu He et al. “SoFi: Reflection-Augmented Fuzzing for JavaScript Engines”.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’21. New York, NY, USA: Association for Computing Ma-
chinery, 2021, 2229–2242. ISBN: 9781450384544. DOI: 10.1145/3460120.3484823.

https://github.com/google/fuzzing/blob/master/docs/split-inputs.md
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md
https://opensource.googleblog.com/2020/12/announcing-atheris-python-fuzzer.html
https://opensource.googleblog.com/2020/12/announcing-atheris-python-fuzzer.html
https://doi.org/10.14722/ndss.2023.24290
https://doi.org/10.1145/3652153
https://doi.org/10.1145/3652153
https://doi.org/10.1109/NetSoft57336.2023.10175397
https://doi.org/10.1109/NetSoft57336.2023.10175397
https://doi.org/10.3348/kjr.2022.0061
https://doi.org/10.3348/kjr.2022.0061
https://doi.org/10.1145/2597073.2597100
https://doi.org/10.1145/2597073.2597100
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1145/3460120.3484823

Bibliography 181

[55] Sarah Heckman and Laurie Williams. “A systematic literature review of ac-
tionable alert identification techniques for automated static code analysis”. In:
Inf. Softw. Technol. 53.4 (Apr. 2011), 363–387. ISSN: 0950-5849. DOI: 10.1016/j.
infsof.2010.12.007.

[56] Sarah Heckman and Laurie Williams. “On establishig a benchmark for evaluat-
ing static analysis alert prioritization and classification techniques”. In: Proceed-
ings of the Second ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement. ESEM ’08. New York, NY, USA: Association for Com-
puting Machinery, 2008, 41–50. ISBN: 9781595939715. DOI: 10.1145/1414004.
1414013.

[57] Adrian Herrera, Mathias Payer, and Antony L. Hosking. “DatAFLow : Toward
a Data-Flow-Guided Fuzzer”. In: ACM Transactions on Software Engineering and
Methodology 32.5 (Sept. 2023), pp. 1–31. ISSN: 1049-331X, 1557-7392. DOI: 10.
1145/3587156. (Visited on 03/08/2024).

[58] Adrian Herrera et al. Corpus Distillation for Effective Fuzzing: A Comparative Eval-
uation. arXiv:1905.13055 [cs]. Sept. 2020. URL: http://arxiv.org/abs/1905.
13055 (visited on 03/09/2024).

[59] Adrian Herrera et al. “Seed selection for successful fuzzing”. In: Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
Virtual Denmark: ACM, July 2021, pp. 230–243. ISBN: 978-1-4503-8459-9. DOI:
10.1145/3460319.3464795. (Visited on 03/08/2024).

[60] Sture Holm. “A Simple Sequentially Rejective Multiple Test Procedure”. In:
Scandinavian Journal of Statistics 6.2 (1979), pp. 65–70. ISSN: 03036898, 14679469.
URL: http://www.jstor.org/stable/4615733 (visited on 06/04/2024).

[61] Kyriakos Ispoglou et al. “FuzzGen: Automatic Fuzzer Generation”. In: 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 2271–2287. ISBN: 978-1-939133-17-5. URL: https://www.usenix.org/
conference/usenixsecurity20/presentation/ispoglou.

[62] Vivek Jain et al. “TIFF: Using Input Type Inference To Improve Fuzzing”. In:
Proceedings of the 34th Annual Computer Security Applications Conference. San Juan
PR USA: ACM, Dec. 2018, pp. 505–517. ISBN: 978-1-4503-6569-7. DOI: 10.1145/
3274694.3274746. (Visited on 03/08/2024).

[63] Hong Jin Kang, Khai Loong Aw, and David Lo. “Detecting false alarms from
automatic static analysis tools: how far are we?” In: Proceedings of the 44th Inter-
national Conference on Software Engineering. ICSE ’22. New York, NY, USA: As-
sociation for Computing Machinery, 2022, 698–709. ISBN: 9781450392211. DOI:
10.1145/3510003.3510214.

[64] E. L. Kaplan and Paul Meier. “Nonparametric Estimation from Incomplete
Observations”. In: Journal of the American Statistical Association 53.282 (June
1958), pp. 457–481. ISSN: 0162-1459, 1537-274X. DOI: 10.1080/01621459.1958.
10501452. (Visited on 03/20/2024).

https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1145/1414004.1414013
https://doi.org/10.1145/1414004.1414013
https://doi.org/10.1145/3587156
https://doi.org/10.1145/3587156
http://arxiv.org/abs/1905.13055
http://arxiv.org/abs/1905.13055
https://doi.org/10.1145/3460319.3464795
http://www.jstor.org/stable/4615733
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1145/3510003.3510214
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1080/01621459.1958.10501452

Bibliography 182

[65] Adhishree Kathikar et al. “Assessing the Vulnerabilities of the Open-Source
Artificial Intelligence (AI) Landscape: A Large-Scale Analysis of the Hugging
Face Platform”. In: 2023 IEEE International Conference on Intelligence and Security
Informatics (ISI). Oct. 2023, pp. 1–6. DOI: 10.1109/ISI58743.2023.10297271.

[66] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. 2000.

[67] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: Case Studies. Kluwer Academic Publishers, July 2000. DOI: 10.1007/
978-1-4757-3188-0.

[68] Matt Kaufmann and J Strother Moore. “ACL2 homepage”. In: See URL
http://www. cs. utexas. edu/users/moore/acl2 (2024).

[69] Faizan Khan et al. “An Empirical Study of Type-Related Defects in Python
Projects”. In: IEEE Transactions on Software Engineering 48.8 (Aug. 2022),
pp. 3145–3158. ISSN: 0098-5589, 1939-3520, 2326-3881. DOI: 10.1109/TSE.2021.
3082068. (Visited on 03/08/2024).

[70] George Klees et al. “Evaluating Fuzz Testing”. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. Toronto
Canada: ACM, Oct. 2018, pp. 2123–2138. ISBN: 978-1-4503-5693-0. DOI:
10.1145/3243734.3243804. (Visited on 03/08/2024).

[71] Herb Krasner. The Cost of Poor Software Quality in the US: A 2020 Report. Tech.
rep. Consortium for Information & Software Quality, Jan. 2021. URL: https:
//www.it-cisq.org/cisq-files/pdf/CPSQ-2020-report.pdf (visited on
03/07/2024).

[72] Wen Li et al. “PyRTFuzz: Detecting Bugs in Python Runtimes via Two-Level
Collaborative Fuzzing”. In: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’23. New York, NY, USA: Associ-
ation for Computing Machinery, 2023, 1645–1659. ISBN: 9798400700507. DOI:
10.1145/3576915.3623166.

[73] Li, Wen and Ruan, Jinyang and Yi, Guangbei and Cheng, Long and Luo, Xiapu
and Cai, Haipeng. “PolyFuzz: Holistic greybox fuzzing of multi-language sys-
tems”. In: 32nd USENIX Security Symposium (USENIX Security 23). 2023. ISBN:
978-1-939133-37-3.

[74] libFuzzer - a library for coverage-guided fuzz testing. URL: https://llvm.org/
docs/LibFuzzer.html (visited on 03/09/2024).

[75] Barbara H Liskov and Alan Snyder. “Exception handling in CLU”. In: IEEE
transactions on software engineering 6 (1979), pp. 546–558.

https://doi.org/10.1109/ISI58743.2023.10297271
https://doi.org/10.1007/978-1-4757-3188-0
https://doi.org/10.1007/978-1-4757-3188-0
https://doi.org/10.1109/TSE.2021.3082068
https://doi.org/10.1109/TSE.2021.3082068
https://doi.org/10.1145/3243734.3243804
https://www.it-cisq.org/cisq-files/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/cisq-files/pdf/CPSQ-2020-report.pdf
https://doi.org/10.1145/3576915.3623166
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

Bibliography 183

[76] Stephan Lukasczyk and Gordon Fraser. “Pynguin: automated unit test genera-
tion for Python”. In: Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. ICSE ’22. New York, NY, USA: As-
sociation for Computing Machinery, 2022, 168–172. ISBN: 9781450392235. DOI:
10.1145/3510454.3516829.

[77] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. “Automated Unit Test
Generation for Python”. In: Search-Based Software Engineering. Ed. by Aldeida
Aleti and Annibale Panichella. Cham: Springer International Publishing, 2020,
pp. 9–24. ISBN: 978-3-030-59762-7.

[78] Ivan do Carmo Machado, Paulo Anselmo da Mota Silveira Neto, and Eduardo
Santana de Almeida. “Towards an integration testing approach for software
product lines”. In: 2012 IEEE 13th International Conference on Information Reuse
& Integration (IRI). 2012, pp. 616–623. DOI: 10.1109/IRI.2012.6303066.

[79] Panagiotis Manolios and Daron Vroon. “Algorithms for Ordinal Arithmetic”.
In: 19th International Conference on Automated Deduction (CADE). Ed. by Franz
Baader. Vol. 2741. Lecture Notes in Computer Science. Springer, 2003, pp. 243–
257. DOI: 10.1007/978-3-540-45085-6_19.

[80] Panagiotis Manolios and Daron Vroon. “Integrating Reasoning About Ordi-
nal Arithmetic into ACL2”. In: 5th International Conference on Formal Methods in
Computer-Aided Design (FMCAD). Ed. by Alan J. Hu and Andrew K. Martin.
Vol. 3312. Lecture Notes in Computer Science. Springer, 2004, pp. 82–97. DOI:
10.1007/978-3-540-30494-4_7.

[81] Panagiotis Manolios and Daron Vroon. “Ordinal Arithmetic: Algorithms and
Mechanization”. In: Journal of Automated Reasoning 34.4 (2005), pp. 387–423.
DOI: 10.1007/s10817-005-9023-9.

[82] Panagiotis Manolios and Daron Vroon. “Termination Analysis with Calling
Context Graphs”. In: Computer Aided Verification. Ed. by Thomas Ball and
Robert B. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 401–
414. ISBN: 978-3-540-37411-4.

[83] N. Mantel. “Evaluation of survival data and two new rank order statistics
arising in its consideration”. In: Cancer Chemotherapy Reports 50.3 (Mar. 1966),
pp. 163–170. ISSN: 0069-0112.

[84] Valentin Manès, Marcel Böhme, and Sang Kil Cha. FSE2020 - Boosting Fuzzer
Efficiency An Information-Theoretic Perspective. Artwork Size: 639622034 Bytes
Pages: 639622034 Bytes. 2020. DOI: 10.6084/M9.FIGSHARE.12415622.V2. (Vis-
ited on 04/06/2024).

[85] Henrique Marques, Nuno Laranjeiro, and Jorge Bernardino. “Injecting software
faults in Python applications: The OpenStack case study”. In: Empirical Software
Engineering 27.1 (Jan. 2022), p. 20. ISSN: 1382-3256, 1573-7616. DOI: 10.1007/
s10664-021-10047-9. (Visited on 03/09/2024).

https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1109/IRI.2012.6303066
https://doi.org/10.1007/978-3-540-45085-6_19
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/s10817-005-9023-9
https://doi.org/10.6084/M9.FIGSHARE.12415622.V2
https://doi.org/10.1007/s10664-021-10047-9
https://doi.org/10.1007/s10664-021-10047-9

Bibliography 184

[86] Glenford J. Myers, Corey Sandler, and Tom. Badgett. The Art of Software Testing.
3rd ed. Hoboken, N.J: John Wiley & Sons, 2012. ISBN: 9781118133132.

[87] Abhinav Nagpal and Goldie Gabrani. “Python for Data Analytics, Scientific
and Technical Applications”. In: 2019 Amity International Conference on Artificial
Intelligence (AICAI). 2019, pp. 140–145. DOI: 10.1109/AICAI.2019.8701341.

[88] Sebastian Neef, Lorenz Kleissner, and Jean-Pierre Seifert. “What All the
PHUZZ Is About: A Coverage-guided Fuzzer for Finding Vulnerabilities in
PHP Web Applications”. In: Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security. Singapore Singapore: ACM, July 2024,
pp. 1523–1538. ISBN: 9798400704826. DOI: 10.1145/3634737.3661137. (Visited
on 08/20/2024).

[89] Geoffrey Neumann, Mark Harman, and Simon Poulding. “Transformed
Vargha-Delaney Effect Size”. In: Bergamo, Italy, 2015, pp. 318–324. DOI:
10.1007/978-3-319-22183-029. (Visited on 03/22/2024).

[90] OpenAI. GPT-4o. May 2024. URL: https://openai.com/index/hello-gpt-4o/
(visited on 09/10/2024).

[91] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. “An Empirical Study
on Type Annotations: Accuracy, Speed, and Suggestion Effectiveness”. In: ACM
Trans. Softw. Eng. Methodol. 30.2 (Feb. 2021). ISSN: 1049-331X. DOI: 10.1145/
3439775.

[92] John-Paul Ore et al. “Assessing the type annotation burden”. In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineer-
ing. Montpellier France: ACM, Sept. 2018, pp. 190–201. ISBN: 978-1-4503-5937-5.
DOI: 10.1145/3238147.3238173. (Visited on 08/07/2024).

[93] Sarah ORourke. How the Atheris Python Fuzzer Works. Copyright - Copyright
Newstex Dec 9, 2020; Last updated - 2020-12-09. Dec. 2020. URL: https://link.
ezproxy.neu.edu/login?url=https://www.proquest.com/blogs-podcasts-
websites/how-atheris-python-fuzzer-works/docview/2468364629/se-2.

[94] OWASP Foundation. OWASP Top Ten. 2021. URL: https://owasp.org/www-
project-top-ten/ (visited on 09/09/2024).

[95] Carlos Pacheco et al. “Feedback-Directed Random Test Generation”. In: 29th
International Conference on Software Engineering (ICSE’07). 2007, pp. 75–84. DOI:
10.1109/ICSE.2007.37.

[96] Joonyoung Park, Inho Lim, and Sukyoung Ryu. “Battles with false positives
in static analysis of JavaScript web applications in the wild”. In: Proceedings
of the 38th International Conference on Software Engineering Companion. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, 61–70. ISBN:
9781450342056. DOI: 10.1145/2889160.2889227.

[97] Parquery AG. icontract. Nov. 2023. URL: https : / / pypi . org / project /
icontract/ (visited on 09/09/2024).

https://doi.org/10.1109/AICAI.2019.8701341
https://doi.org/10.1145/3634737.3661137
https://doi.org/10.1007/978-3-319-22183-0 29
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.1145/3439775
https://doi.org/10.1145/3439775
https://doi.org/10.1145/3238147.3238173
https://link.ezproxy.neu.edu/login?url=https://www.proquest.com/blogs-podcasts-websites/how-atheris-python-fuzzer-works/docview/2468364629/se-2
https://link.ezproxy.neu.edu/login?url=https://www.proquest.com/blogs-podcasts-websites/how-atheris-python-fuzzer-works/docview/2468364629/se-2
https://link.ezproxy.neu.edu/login?url=https://www.proquest.com/blogs-podcasts-websites/how-atheris-python-fuzzer-works/docview/2468364629/se-2
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2889160.2889227
https://pypi.org/project/icontract/
https://pypi.org/project/icontract/

Bibliography 185

[98] pickle — Python object serialization. URL: https://docs.python.org/3/library/
pickle.html (visited on 03/07/2024).

[99] pytype. URL: https://github.com/google/pytype (visited on 06/28/2024).

[100] Hongjin Qian et al. Are Long-LLMs A Necessity For Long-Context Tasks?
arXiv:2405.15318 [cs]. May 2024. URL: http://arxiv.org/abs/2405.15318
(visited on 09/07/2024).

[101] Ingkarat Rak-amnouykit et al. “Python 3 types in the wild: a tale of two type
systems”. In: Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages. Virtual USA: ACM, Nov. 2020, pp. 57–70. ISBN: 978-1-4503-
8175-8. DOI: 10.1145/3426422.3426981. (Visited on 03/08/2024).

[102] Sebastian Raschka, Joshua Patterson, and Corey Nolet. “Machine Learning in
Python: Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence”. In: Information 11.4 (2020). ISSN: 2078-
2489. DOI: 10.3390/info11040193.

[103] Sanjay Rawat et al. “VUzzer: Application-aware Evolutionary Fuzzing”. In:
Proceedings 2017 Network and Distributed System Security Symposium. San Diego,
CA: Internet Society, 2017. ISBN: 978-1-891562-46-4. DOI: 10.14722/ndss.2017.
23404. (Visited on 08/08/2024).

[104] Alexandre Rebert et al. “Optimizing seed selection for fuzzing”. In: 23rd
USENIX Security Symposium (USENIX Security 14). 2014, pp. 861–875.

[105] RecursionError in pyclbr.readmodule_ex. Apr. 2023. URL: https://github.com/
python/cpython/issues/103864 (visited on 07/13/2024).

[106] Albert Reuther et al. “Interactive supercomputing on 40,000 cores for machine
learning and data analysis”. In: 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE. 2018, pp. 1–6.

[107] Robust Intelligence. Pickle Serialization in Data Science: A Ticking Time Bomb. URL:
https://www.robustintelligence.com/blog-posts/pickle-serialization-
in-data-science-a-ticking-time-bomb.

[108] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 - Type Hints.
Sept. 2014. URL: 10.1145/3426422.3426981 (visited on 03/07/2024).

[109] Ori Roth. Python Type Hints are Turing Complete. arXiv:2208.14755 [cs]. Aug.
2022. URL: http://arxiv.org/abs/2208.14755 (visited on 03/08/2024).

[110] Patrick Royston and Mahesh Kb Parmar. “Restricted mean survival time: an
alternative to the hazard ratio for the design and analysis of randomized trials
with a time-to-event outcome”. In: BMC Medical Research Methodology 13.1 (Dec.
2013), p. 152. ISSN: 1471-2288. DOI: 10.1186/1471-2288-13-152. (Visited on
04/05/2024).

[111] Rust Programming Language. URL: https://www.rust-lang.org/ (visited on
08/16/2024).

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://github.com/google/pytype
http://arxiv.org/abs/2405.15318
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.3390/info11040193
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.14722/ndss.2017.23404
https://github.com/python/cpython/issues/103864
https://github.com/python/cpython/issues/103864
https://www.robustintelligence.com/blog-posts/pickle-serialization-in-data-science-a-ticking-time-bomb
https://www.robustintelligence.com/blog-posts/pickle-serialization-in-data-science-a-ticking-time-bomb
10.1145/3426422.3426981
http://arxiv.org/abs/2208.14755
https://doi.org/10.1186/1471-2288-13-152
https://www.rust-lang.org/

Bibliography 186

[112] Rizel Scarlett. Why Python keeps growing, explained. Mar. 2023. URL: https://
github.blog/2023-03-02-why-python-keeps-growing-explained/ (visited
on 06/27/2024).

[113] Matt Schwager, Dominik Klemba, and Josiah Dykstra. “Design and Implemen-
tation of a Coverage-Guided Ruby Fuzzer”. In: Proceedings of the 17th Cyber
Security Experimentation and Test Workshop. Philadelphia PA USA: ACM, Aug.
2024, pp. 27–33. ISBN: 9798400709579. DOI: 10.1145/3675741.3675749. (Visited
on 08/20/2024).

[114] Agnia Sergeyuk et al. Using AI-Based Coding Assistants in Practice: State of Affairs,
Perceptions, and Ways Forward. arXiv:2406.07765 [cs]. June 2024. URL: http://
arxiv.org/abs/2406.07765 (visited on 09/07/2024).

[115] Naomi Seyfer. What to do about setters of a different type than their property? Mar.
2017. URL: https : / / github . com / python / mypy / issues / 3004 (visited on
08/08/2024).

[116] Bhargava Shastry et al. “Static Program Analysis as a Fuzzing Aid”. In: Research
in Attacks, Intrusions, and Defenses. Ed. by Marc Dacier et al. Cham: Springer
International Publishing, 2017, pp. 26–47. ISBN: 978-3-319-66332-6.

[117] Jeremy Siek. What is Gradual Typing. Mar. 2014. URL: https://wphomes.soic.
indiana.edu/jsiek/what-is-gradual-typing/ (visited on 03/07/2024).

[118] A Singhal, T Winograd, and K A Scarfone. Guide to secure web services. Tech. rep.
NIST SP 800-95. Edition: 0. Gaithersburg, MD: National Institute of Standards
and Technology, 2007, NIST SP 800–95. DOI: 10.6028/NIST.SP.800-95. (Visited
on 08/29/2024).

[119] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution”. In: Proceedings 2016 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2016. ISBN: 978-1-891562-41-9. DOI:
10.14722/ndss.2016.23368. (Visited on 08/02/2024).

[120] Evan Sultanik. Never a dill moment: Exploiting machine learning pickle files.
Mar. 2021. URL: https://blog.trailofbits.com/2021/03/15/never- a-
dill - moment - exploiting - machine - learning - pickle - files/ (visited on
03/07/2024).

[121] Gil Tayar et al. Github - tc39/proposal-type-annotations: ECMAScript proposal: Type
Annotations. URL: https://github.com/tc39/proposal-type-annotations
(visited on 08/05/2024).

[122] The Associated Press. “British Airways computer problem strands 20,000 trav-
elers; 100+ London flights canceled”. In: USA Today (Aug. 2019). URL: https:
//www.usatoday.com/story/travel/airline-news/2019/08/07/british-
airways - computer - glitch - strands - 20 - 000 - 100 - london - flights -
canceled/1942804001/ (visited on 03/07/2024).

https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://doi.org/10.1145/3675741.3675749
http://arxiv.org/abs/2406.07765
http://arxiv.org/abs/2406.07765
https://github.com/python/mypy/issues/3004
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/
https://doi.org/10.6028/NIST.SP.800-95
https://doi.org/10.14722/ndss.2016.23368
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://github.com/tc39/proposal-type-annotations
https://www.usatoday.com/story/travel/airline-news/2019/08/07/british-airways-computer-glitch-strands-20-000-100-london-flights-canceled/1942804001/
https://www.usatoday.com/story/travel/airline-news/2019/08/07/british-airways-computer-glitch-strands-20-000-100-london-flights-canceled/1942804001/
https://www.usatoday.com/story/travel/airline-news/2019/08/07/british-airways-computer-glitch-strands-20-000-100-london-flights-canceled/1942804001/
https://www.usatoday.com/story/travel/airline-news/2019/08/07/british-airways-computer-glitch-strands-20-000-100-london-flights-canceled/1942804001/

Bibliography 187

[123] The Clang Team. SanitizerCoverage. URL: https : / / clang . llvm . org / docs /
SanitizerCoverage.html (visited on 04/05/2024).

[124] The LLVM Compiler Infrastructure. URL: https : / / llvm . org/ (visited on
07/20/2024).

[125] the mypy project. mypy. URL: https : / / mypy - lang . org/ (visited on
03/07/2024).

[126] The top programming languages. 2022. URL: https://octoverse.github.com/
2022/top-programming-languages (visited on 03/07/2024).

[127] Lionel Nganyewou Tidjon and Foutse Khomh. Threat Assessment in Machine
Learning based Systems. arXiv:2207.00091 [cs]. June 2022. URL: http://arxiv.
org/abs/2207.00091 (visited on 03/15/2024).

[128] Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and
JAX. URL: https : / / github . com / huggingface / transformers (visited on
03/25/2024).

[129] TypeScript: JavaScript with syntax for types. URL: https://www.typescriptlang.
org/ (visited on 08/05/2024).

[130] typing — Support for type hints. URL: https://docs.python.org/3/library/
typing.html (visited on 03/13/2024).

[131] András Vargha and Harold D. Delaney. “A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong”. In: Journal
of Educational and Behavioral Statistics 25.2 (June 2000), pp. 101–132. ISSN: 1076-
9986, 1935-1054. DOI: 10.3102/10769986025002101. (Visited on 03/19/2024).

[132] Till Varoquaux and Konstantin Kashin. PEP 593 - Flexible function and variable
annotations. Apr. 2019. URL: https://peps.python.org/pep-0593/ (visited on
06/27/2024).

[133] Vasudev Vikram, Rohan Padhye, and Koushik Sen. “Growing a Test Corpus
with Bonsai Fuzzing”. In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE). Madrid, ES: IEEE, May 2021, pp. 723–735. ISBN: 978-1-
66540-296-5. DOI: 10.1109/ICSE43902.2021.00072. (Visited on 03/09/2024).

[134] Alexey Vishnyakov et al. “Sydr-Fuzz: Continuous Hybrid Fuzzing and Dy-
namic Analysis for Security Development Lifecycle”. In: arXiv.org (2023). ISSN:
2331-8422.

[135] Andrew T. Walter, David Greve, and Panagiotis Manolios. “Enumerative Data
Types with Constraints”. In: 2022 Formal Methods in Computer-Aided Design (FM-
CAD). 2022, pp. 189–198. DOI: 10.34727/2022/isbn.978-3-85448-053-2_25.

[136] Andrew T. Walter, Ankit Kumar, and Panagiotis Manolios. Calculational Proofs
in ACL2s. arXiv:2307.12224 [cs]. July 2023. URL: http://arxiv.org/abs/2307.
12224 (visited on 08/14/2024).

https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://llvm.org/
https://mypy-lang.org/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
http://arxiv.org/abs/2207.00091
http://arxiv.org/abs/2207.00091
https://github.com/huggingface/transformers
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://doi.org/10.3102/10769986025002101
https://peps.python.org/pep-0593/
https://doi.org/10.1109/ICSE43902.2021.00072
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_25
http://arxiv.org/abs/2307.12224
http://arxiv.org/abs/2307.12224

Bibliography 188

[137] Andrew T. Walter and Panagiotis Manolios. “ACL2s Systems Programming”.
In: Proceedings of the Seventeenth International Workshop on the ACL2 Theorem
Prover and its Applications. EPTCS. 2022. DOI: 10.4204/EPTCS.359.12.

[138] Junjie Wang et al. “Skyfire: Data-Driven Seed Generation for Fuzzing”. In: 2017
IEEE Symposium on Security and Privacy (SP). San Jose, CA, USA: IEEE, May
2017, pp. 579–594. ISBN: 978-1-5090-5533-3. DOI: 10.1109/SP.2017.23. (Visited
on 03/08/2024).

[139] Junjie Wang et al. Superion: Grammar-Aware Greybox Fuzzing. arXiv:1812.01197
[cs]. Jan. 2019. URL: http : / / arxiv . org / abs / 1812 . 01197 (visited on
03/08/2024).

[140] Mingzhe Wang et al. “SAFL: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings. Gothenburg
Sweden: ACM, May 2018, pp. 61–64. ISBN: 978-1-4503-5663-3. DOI: 10.1145/
3183440.3183494. (Visited on 07/31/2024).

[141] Yuli Wang et al. “JSTIFuzz: Type-Inference-based JavaScript Engine Fuzzing”.
In: 2020 International Conference on Networking and Network Applications (NaNA).
2020, pp. 381–387. DOI: 10.1109/NaNA51271.2020.00071.

[142] Colin Winter and Tony Lownds. PEP 3107 - Function Annotations. Dec. 2006.
URL: https://peps.python.org/pep-3107/ (visited on 06/27/2024).

[143] Yi Yang, Ana Milanova, and Martin Hirzel. “Complex Python features in the
wild”. In: Proceedings of the 19th International Conference on Mining Software
Repositories. MSR ’22. New York, NY, USA: Association for Computing Ma-
chinery, 2022, 282–293. ISBN: 9781450393034. DOI: 10.1145/3524842.3528467.

[144] Insu Yun et al. “QSYM: A practical concolic execution engine tailored for hy-
brid fuzzing”. In: 27th USENIX Security Symposium (USENIX Security 18). 2018,
pp. 745–761.

[145] Andreas Zeller et al. “Fuzzing with Grammars”. In: The Fuzzing Book. CISPA
Helmholtz Center for Information Security, 2024. URL: https : / / www .
fuzzingbook.org/html/Grammars.html.

[146] Andreas Zeller et al. “Mutation-Based Fuzzing”. In: The Fuzzing Book. CISPA
Helmholtz Center for Information Security, 2023. URL: https : / / www .
fuzzingbook.org/html/MutationFuzzer.html.

[147] Hongyu Zhai, Casey Casalnuovo, and Prem Devanbu. “Test Coverage in
Python Programs”. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). Montreal, QC, Canada: IEEE, May 2019, pp. 116–
120. ISBN: 978-1-72813-412-3. DOI: 10 . 1109 / MSR . 2019 . 00027. (Visited on
03/09/2024).

https://doi.org/10.4204/EPTCS.359.12
https://doi.org/10.1109/SP.2017.23
http://arxiv.org/abs/1812.01197
https://doi.org/10.1145/3183440.3183494
https://doi.org/10.1145/3183440.3183494
https://doi.org/10.1109/NaNA51271.2020.00071
https://peps.python.org/pep-3107/
https://doi.org/10.1145/3524842.3528467
https://www.fuzzingbook.org/html/Grammars.html
https://www.fuzzingbook.org/html/Grammars.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://doi.org/10.1109/MSR.2019.00027

	Declaration of Authorship
	Abstract
	Acknowledgements
	Glossary
	Acronyms
	Introduction
	Background and Motivation
	Python and its Type Annotations
	Static Type Checkers
	Problem and Solution
	Related Work
	Fuzzing Python Code
	Fuzzing Other Dynamic Languages
	Leveraging Type Information in Fuzzing
	Bugginess of Python and Software Testing Deficiencies
	Deficiencies of Static Tools
	General Fuzzing-Related Works

	Overview of ACL2s
	Data Definition
	Primitive Types
	Complex types

	Custom Enumerators
	Integers
	Implementation Errors

	Strings
	Floats
	Implementation Errors

	Related Work
	Acknowledgements

	Overview of Atheris/libFuzzer
	libFuzzer
	Fuzzing Loop
	Command Line Options
	Reduction

	Atheris
	Related Work

	Tool Design and Implementation
	High-level Architecture
	Type Information Extraction
	Fuzzing
	Results Processing

	Implementation Details
	Type Information Extraction
	Type Modeling Service
	Type Mapping
	Function Candidates

	Results Multiset
	Monkeypatching
	Custom Mutator
	Configuration Files

	Custom Encoding
	Motivation
	Design
	Encoding Specification
	Modifications to libFuzzer
	Related Work
	Encodings
	Vulnerabilities of Pickle

	Evaluation
	Experimental Methods
	Research Questions
	RQ1. How does the custom encoding compare to pickle in facilitating effective fuzzing?
	Post-Mutation Decode Rate
	Unique Points and Total Points
	Coverage Growth
	Knee, ttk, cak

	RQ2. How does the configuration of the tool affect fuzzing performance?
	Crash Deduplication
	Crash Filtering
	Crash Survival Analysis

	RQ3. Does the tool find issues that developers care about?
	Qualitative Issue Classification

	Experimental Configurations
	Notational Conventions

	Repository Selection Methodology
	Environment
	Statistical Test Corrections

	Results
	RQ1
	Post-Mutation Decode Rates
	Unique and total points
	Coverage Growth
	ttk, cak, and cak/ttk

	RQ2
	Cumulative Coverage
	cak/ttk Ratios
	Auxiliary Evaluation
	Cumulative Crash Counts
	Crash Survival Analysis
	rmst Comparison

	RQ3
	Reported Crashes
	Community Feedback
	Generative AI Case Study
	Other Observations

	Discussion and Future Work
	Discussion
	Threats To Validity
	Sample Sizes
	Timeouts
	Algorithmic Inefficiencies
	Repository Selection
	Exception Deduplication
	Assumptions in Statistical Analysis
	Confidence Intervals
	Custom Enumerators
	Manual Bug Analysis and Reporting

	Type Hint Enhancement Proposals
	Non-empty List
	Natural Numbers/Non-negative Integers
	Generalization: Predicates

	Future Work
	Short-term Directions
	Long-term Directions

	Conclusion
	Tool Configuration Reference
	Full Crash Data
	Bibliography

